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Introduction

Procedural mathematics is a method of doing mathematics that stemmed from my dissatisfaction with clas-
sical logic and in particular, universal quantification. My intuitive understanding of universal quantification
is as an infinite conjunction, i.e. P1 ∧ P2 ∧ P3 ∧ · · · . My uneasiness with the proposition is not deep, it’s
simply that the proposition’s end has always felt inaccessible, out of reach, rarefied. Perhaps my discomfort
stems from the fact that I was programming for nearly a decade before learning university-level mathematics,
and so I had implicitly/intuitively developed a different more syntactical and restrained understanding of
program correctness over an unbounded domain. Procedural mathematics is my attempt at articulating this
programmatic understanding.

Background of Procedural Mathematics

Perhaps it would be easier to describe procedural mathematics by first contrasting it to its alternatives. One
method of doing mathematics is through argumentation. In this method, the objects under consideration
are first defined, then a statement called a theorem is made, then a deductive argument for why the theorem
holds called a proof is provided. Here, proofs can use theorems that have been proven earlier and likewise for
definitions. This method is perfectly valid and is underpinned by such concepts as universal quantification
for expressing generality, existential quantification for expressing existence, the domains over which they
apply, and the logical rules governing their interactions with other logical operators such as conjunction and
disjunction. The fact that this so far has been the only known general method for doing mathematics has,
I believe, led to a situation where it has been applied in contexts (especially in education and technology)
where alternative approaches may have been suitable.

Another method for doing mathematics, albeit incomplete, goes by various names including Transparent
Proofs, Transparent Pseudo Proofs, and Gneric Proofs. This method is essentially a specialization of the
argumentation method presented above except that instead of giving a deductive argument for why the
theorem holds, a deductive argument for why a particular case of a theorem holds is presented in such a
way that the main ideas for the proof of the general case are communicated. The benefit of this method is
that universal and existential quantification, domains of discourse, and the apparatus of mathematical logic
are temporarily backgrounded whilst the techniques specific to the given proof are given center stage. The
drawback of this method is that the outcome is not actually a proof because the line between the main ideas
of the general proof and the ideas incidental to the particular case is not made explicit. And as soon as this
line is made clear, the Transparent Pseudo Proof reverts to being an ordinary proof. Hence in the end, this
method only tends to be used in brief proof sketches.

Yet another incomplete method of doing mathematics goes by the name of Proof Without Words. A proof
without words is understood to be a theorem statement followed by a diagram or a picture that demonstrates
it to be self-evident. It is convenient to extend this definition to include unexplained algorithms because
their persuasive effect can be similar to that of diagrams and pictures. Similar to the Transparent Pseudo
Proofs mentioned above, this method of doing mathematics excels in emphasizing the content of a proof over
its form. Unfortunately Proof Without Words are not quite proofs because the link between the ”picture”
and the theorem to be proved is necessarily implicit. That something is missing in these kinds of proofs is
evidenced by the tendency for their authors to caption diagrams and pictures, and write proofs of correctness
for unexplained algorithms so as to ”complete” them. What is sought then is a method for doing proof based
mathematics that does not depend on the concepts of mathematical logic, nor consequently, argumentation,
and yet can scale enough to communicate topics like number theory, real and complex analysis, and linear
algebra.
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Description of Procedural Mathematics

Overall, this method replaces proving stated mathematical theorems with inventing correct procedures to
realize stated objectives. To achieve this, the first part of this method calls for the elucidation of the
mathematical semantic rules being followed; their adherence is the criterion for “correctness”. Rules whose
adherence is known to guarantee that procedure implementations meet stated objectives in practice (like
those of elementary algebra) are what would typically be chosen here. The use of semantic rules in this
method is similar to its use in computer science, though the types of rules are markedly different. There, type
systems and ownership systems are the most common semantic rules and they serve to prevent syntactically
valid programs from compiling when objects of an incorrect type are found in certain contexts within the
source code or when object access patterns in the source code are incorrect respectively. The key point
of semantic rules is that they serve to rule out grammatically correct instructions before they are even
“executed”.

So far with our semantic rules we have enough to “prove” “theorems” true in a programmatic manner. But
just like machine code is hard to read and write for programmers, our newfangled “proofs” would be hard
to read and write for mathemticians. The next parts of this method are about using commonplace software
engineering techniques to structure our “proofs” better and hence allow them to scale enough to realize
complex objectives. The second part of this method is the declaration of terminology that will later be used.
Declarations are more similar to their namesake in computer programming than they are to definitions in
proof-based mathematics. Their purpose is to simplify/make concise instructions that involve manipulating
complex structures, just like in computer programming. Nevertheless, the conceptual role of declarations is
analogous to that of definitions in mathematics: they give single a name to a group of related ideas; and this
in turn enables comprehension of more complex structures.

The third part of this method is announcement of the mathematical objective to be achieved. Some rea-
sonable objectives might be to show that an arithmetical equality holds, construct an object with certain
properties, or construct another procedure with a potentially different objective. Again, objectives are more
similar to the comments that one might see above a procedure in a computer program’s source code than they
are to a theorem statement in proof-based mathematics. Their purpose is to enable readers to understand
more complex proofs by sometimes getting them to see certain parts of proofs as black boxes that have the
effect given by their objective. For this reason procedure objectives could be said to play a role analogous to
theorem statements in proof-based mathematics. However there are some conceptual differences: unlike the
theorem statement of a proof, a procedure objective is not a fact nor is it a logical consequence of a group
of axioms; rather it is merely a description of the intent of the associated implementation.

The last part of this method is the implementation of a semantically valid procedure for achieving the
stated objective. This procedure might in turn use previous procedures or even the current procedure (in
which case, the procedure is said to be recursive) to achieve sub-objectives. Semantically valid procedures
are very similar to source code written in a statically typed programming language because both comprise
an unambiguous set of instructions that can be carried out by a practitioner and both are constructed
according to some agreed upon some set of semantic rules. Their dissimilarity is that semantically valid
procedures would usually be written in a natural language grammar for a human audience whereas source
code is usually written in an artificial grammar primarily for execution on a computer. Semantically valid
procedures are also similar to deductive proofs in that both are constructed according to rules which serve
to bestow correctness upon the proof; however they are crucially different in that one is instructional whilst
the other is argumentative in nature.
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Comparing Procedural Mathematics

Classical Mathemat-
ics

Transparent /
Wordless Proofs

Procedural Mathe-
matics

Grammatical Mood Factual because proofs
establish theorems,
which are facts about
abstract objects. For
example, claims that
a proposition holds
on every member of a
domain are valid.

Factual because the
theorems being proved
are identical to their
equivalents in classical
mathematics.

Intentional because
procedures are labelled
only with their intent.
I.e. no claim is made
that procedures achieve
the objectives on every
member of a domain.

Generality Full. Universal quanti-
fiers are used to express
the generality of propo-
sitions over infinite do-
mains.

None becuase a theo-
rem is proven for only
one well-chosen case.
That being said, most
readers should be able
to generalize proof to
other cases.

Full. Symbols are used
to indicate values that
are only known at ”run-
time”. At ”run-time”
these symbols take on
a single value, rather
than ranging over a set.

Transparency Optional because the
logical and object lan-
guage can be insepara-
bly mixed. For exam-
ple, a non-constructive
arithmetical proof gen-
erally cannot be put
in purely arithmetical
terms.

More than in classical
mathematics because
theorems are proven
only on explicitly se-
lected objects. I.e.
transparent proofs
enforce more terms in
the object language
than classical proofs.

Full because procedural
mathematics is about
providing instructions
to do mathematics
rather than ”doing”
mathematics. Hence
procedure execution
yields artifacts purely
in the object language.

Correctness Crite-
rion

All inferences leading
to theorem must orig-
inate from stated in-
ference rules and must
trace back to stated ax-
ioms.

Almost the same as
classical mathematics,
but the generalization
steps are not made ex-
plicit.

Adherence of proce-
dure implementations
to well-chosen mathe-
matical semantic rules
with the objective in a
”conclusive” position.

Expressiveness Full. Sufficient for do-
ing pure and applied
mathematics and in-
cludes topics like trans-
finite set theory.

Subset of classical
mathematics where
existential statements
have witnesses be-
cause proofs are done
on explicitly chosen
witnesses.

Subset of classical
mathematics. Captures
topics like trigonome-
try and calculus. Fails
to express topics like
transfinite set theory.

Imports Universal and exis-
tential quantification,
transfinite set theory,
inference rules, axioms.

Inference rules and ax-
ioms. Universal and ex-
istential quantification
are made implicit.

Data structures, proce-
dures, lambdas, recur-
sion, static analysis.

Treatment of Con-
tradictions

The derivation of a con-
tradiction from an as-
sumption implies that
the assumption is false.
Justified by the law of
noncontradiction.

Largely outside the
scope of transparent /
wordless proofs. Where
they do occur, inter-
pretation is the same
as that of classical
mathematics.

Sentences are shown
to be ”impossible” by
providing a procedure
(with an effectively
empty domain) to
transform it into a
more obviously ”im-
possible” sentence.
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The above table shows the similarities and differences between the four methods of doing mathematics
presented above. Note that they are not all trying to do exactly the same thing, as is evidenced by the
variations in their grammatical moods. Also note that while procedural mathematics is strictly less expressive
than classical mathematics, it may just be expressive enough to conduct most fields of applied mathemtics
within.

Methodology of Mathematical Experiment

Above I have described a general method for doing mathematics but did not provide evidence that it is
workable. The rest of this book intends to prove that this approach is indeed generally usable by reformu-
lating the elementary parts of number theory, hard analysis, calculus, and linear algebra using the tools of
procedural mathematics. So, while formal mathematics usually takes the format of definition-theorem-proof,
this project has the format of declaration-procedure objective-procedure implementation. So where there
usually would have been a statement and proof of Euler’s totient theorem, procedure I:72 is provided, and
where there would have been a definition of Euler’s totient function, declaration I:28 is provided. Perhaps not
surprisingly, software programming tools and concepts like lambdas, procedures, recursion, and modularity
have turned out to be instrumental in rendering intelligable what could have been an indecipharable network
of instructions/operations.
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Chapter 1

Integer Arithmetic

Declaration I:0(1.22)

The phrase ”integer” will be used as a shorthand for
an ordered pair of natural numbers.

Declaration I:1(1.23)

The phrase ”the positive part of a” and the nota-
tion po(a), where a is an integer, will be used as a
shorthand for the first entry of a.

Declaration I:2(1.24)

The phrase ”the negative part of a” and the nota-
tion ne(a), where a is an integer, will be used as a
shorthand for the second entry of a.

Declaration I:3(1.25)

The phrase ”a = b”, where a, b are integers, will be
used as a shorthand for ”po(a) + ne(b) = ne(a) +
po(b)”.

Procedure I:0(1.65)

Objective

Choose an integer a. The objective of the following
instructions is to show that a = a.

Implementation

1. Show that a = a using declaration I:3
given that po(a) + ne(a) = ne(a) + po(a).

Procedure I:1(1.66)

Objective

Choose two integers a, b such that a = b. The ob-
jective of the following instructions is to show that
b = a.

Implementation

1. Using declaration I:3, show that b = a

(a) given that po(b) + ne(a) = ne(b) + po(a)

(b) given that po(a) + ne(b) = ne(a) + po(b)

(c) given that a = b.

Procedure I:2(1.67)

Objective

Choose three integers a, b, c such that a = b and
b = c. The objective of the following instructions is
to show that a = c.

Implementation

1. Show that po(a) + ne(b) = ne(a) + po(b) using
declaration I:3.

2. Show that po(b) + ne(c) = ne(b) + po(c) using
declaration I:3.

3. Hence show that a = c

(a) given that po(a) + ne(c) = ne(a) + po(c)

(b) given that po(a) + ne(b) + po(b) + ne(c) =
ne(a) + po(b) + ne(b) + po(c).
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Declaration I:4(1.26)

The notation a + b, where a, b are integers, will be
used as a shorthand for the pair 〈po(a) + po(b),
ne(a) + ne(b)〉.

Procedure I:3(1.68)

Objective

Choose four integers a, b, c, d such that a = c and
b = d. The objective of the following instructions is
to show that a+ b = c+ d.

Implementation

1. Show that po(a) + ne(c) = ne(a) + po(c) using
declaration I:3.

2. Show that po(b) + ne(d) = ne(b) + po(d) using
declaration I:3.

3. Hence using declaration I:4, show that a+ b

(a) = 〈po(a),ne(a)〉+ 〈po(b),ne(b)〉

(b) = 〈po(a) + po(b),ne(a) + ne(b)〉

(c) = 〈po(a) + po(b) + ne(c) + ne(d),ne(a) +
ne(b) + ne(c) + ne(d)〉

(d) = 〈(po(a) + ne(c)) + (po(b) + ne(d)),ne(a) +
ne(b) + ne(c) + ne(d)〉

(e) = 〈(ne(a) + po(c)) + (ne(b) + po(d)),ne(a) +
ne(b) + ne(c) + ne(d)〉

(f) = 〈ne(a) + ne(b) + po(c) + po(d),ne(a) +
ne(b) + ne(c) + ne(d)〉

(g) = 〈po(c) + po(d),ne(c) + ne(d)〉

(h) = 〈po(c),ne(c)〉+ 〈po(d),ne(d)〉

(i) = c+ d.

Procedure I:4(1.69)

Objective

Choose three integers a, b, c. The objective of the
following instructions is to show that (a + b) + c =
a+ (b+ c).

Implementation

1. Using declaration I:4, show that (a+ b) + c

(a) = 〈po(a) + po(b),ne(a) + ne(b)〉 + 〈po(c),
ne(c)〉

(b) = 〈(po(a) + po(b)) + po(c), (ne(a) + ne(b)) +
ne(c)〉

(c) = 〈po(a) + (po(b) + po(c)),ne(a) + (ne(b) +
ne(c))〉

(d) = 〈po(a),ne(a)〉 + 〈po(b) + po(c),ne(b) +
ne(c)〉

(e) = a+ (b+ c).

Procedure I:5(1.70)

Objective

Choose two integers a, b. The objective of the fol-
lowing instructions is to show that a+ b = b+ a.

Implementation

1. Using declaration I:4, show that a+ b

(a) = 〈po(a) + po(b),ne(a) + ne(b)〉

(b) = 〈po(b) + po(a),ne(b) + ne(a)〉

(c) = b+ a.

Declaration I:5(1.27)

The notation a, where a is a natural number, will
contextually be used as a shorthand for the pair 〈a,
0〉.

Procedure I:6(1.71)

Objective

Choose an integer a. The objective of the following
instructions is to show that 0 + a = a.

Implementation

1. Using declaration I:4, show that 0 + a

(a) = 〈0, 0〉+ 〈po(a),ne(a)〉

(b) = 〈0 + po(a), 0 + ne(a)〉

(c) = 〈po(a),ne(a)〉

(d) = a.

Declaration I:6(1.28)

The notation −a, where a is an integer, will be used
as a shorthand for the pair 〈ne(a),po(a)〉.
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Procedure I:7(1.72)

Objective

Choose two integers a, b such that a = b. The ob-
jective of the following instructions is to show that
−a = −b.

Implementation

1. Show that po(a) + ne(b) = ne(a) + po(b) using
declaration I:3.

2. Hence using declaration I:6, show that −a

(a) = 〈ne(a),po(a)〉

(b) = 〈ne(a) + po(b),po(a) + po(b)〉

(c) = 〈po(a) + ne(b),po(a) + po(b)〉

(d) = 〈ne(b),po(b)〉

(e) = −b.

Procedure I:8(1.73)

Objective

Choose an integer a. The objective of the following
instructions is to show that −a+ a = 0.

Implementation

1. Using declaration I:4, show that −a+ a

(a) = (−a) + a

(b) = 〈ne(a),po(a)〉+ 〈po(a),ne(a)〉

(c) = 〈ne(a) + po(a),po(a) + ne(a)〉

(d) = 〈0, 0〉

(e) = 0.

Declaration I:7(1.29)

The notation ab, where a, b are integers, will be used
as a shorthand for the pair 〈po(a) po(b)+ne(a) ne(b),
po(a) ne(b) + ne(a) po(b)〉.

Procedure I:9(1.74)

Objective

Choose four integers a, b, c, d such that a = c and
b = d. The objective of the following instructions is
to show that ab = cd.

Implementation

1. Show that po(a) + ne(c) = ne(a) + po(c) using
declaration I:3.

2. Show that po(b) + ne(d) = ne(b) + po(d) using
declaration I:3.

3. Hence using declaration I:7, show that ab

(a) = 〈po(a) po(b) + ne(a) ne(b),po(a) ne(b) +
ne(a) po(b)〉

(b) = 〈po(a) po(b) + ne(a) ne(b) + po(a) ne(d) +
ne(c) po(d) + po(c) ne(d),po(a) ne(b) +
ne(a) po(b) + po(a) ne(d) + ne(c) po(d) +
po(c) ne(d)〉

(c) = 〈po(a)(po(b) + ne(d)) + ne(a) ne(b) +
ne(c) po(d) + po(c) ne(d),po(a) ne(b) +
ne(a) po(b) + po(a) ne(d) + ne(c) po(d) +
po(c) ne(d)〉

(d) = 〈po(a)(ne(b) + po(d)) + ne(a) ne(b) +
ne(c) po(d) + po(c) ne(d),po(a) ne(b) +
ne(a) po(b) + po(a) ne(d) + ne(c) po(d) +
po(c) ne(d)〉

(e) = 〈(po(a) + ne(c)) po(d) + ne(a) ne(b) +
po(c) ne(d),ne(a) po(b) + po(a) ne(d) +
ne(c) po(d) + po(c) ne(d)〉

(f) = 〈(ne(a) + po(c)) po(d) + ne(a) ne(b) +
po(c) ne(d),ne(a) po(b) + po(a) ne(d) +
ne(c) po(d) + po(c) ne(d)〉

(g) = 〈ne(a)(po(d) + ne(b)) + po(c) po(d) +
po(c) ne(d),ne(a) po(b) + po(a) ne(d) +
ne(c) po(d) + po(c) ne(d)〉

(h) = 〈ne(a)(po(b) + ne(d)) + po(c) po(d) +
po(c) ne(d),ne(a) po(b) + po(a) ne(d) +
ne(c) po(d) + po(c) ne(d)〉

(i) = 〈(ne(a) + po(c)) ne(d) + po(c) po(d),
po(a) ne(d) + ne(c) po(d) + po(c) ne(d)〉

(j) = 〈(po(a) + ne(c)) ne(d) + po(c) po(d),
po(a) ne(d) + ne(c) po(d) + po(c) ne(d)〉

(k) = 〈ne(c) ne(d) + po(c) po(d),ne(c) po(d) +
po(c) ne(d)〉

(l) = cd.
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Procedure I:10(1.75)

Objective

Choose three integers a, b, c. The objective of the
following instructions is to show that (ab)c = a(bc).

Implementation

1. Using declaration I:7, show that (ab)c

(a) = 〈po(a) po(b) + ne(a) ne(b),po(a) ne(b) +
ne(a) po(b)〉〈po(c),ne(c)〉

(b) = 〈(po(a) po(b) + ne(a) ne(b)) po(c) +
(po(a) ne(b)+ne(a) po(b)) ne(c), (po(a) po(b)+
ne(a) ne(b)) ne(c) + (po(a) ne(b) +
ne(a) po(b)) po(c)〉

(c) = 〈po(a)(po(b) po(c) + ne(b) ne(c)) +
ne(a)(po(b) ne(c)+ne(b) po(c)),po(a)(po(b) ne(c)+
ne(b) po(c)) + ne(a)(po(b) po(c) +
ne(b) ne(c))〉

(d) = 〈po(a),ne(a)〉〈po(b) po(c) + ne(b) ne(c),
po(b) ne(c) + ne(b) po(c)〉

(e) = a(bc).

Procedure I:11(1.76)

Objective

Choose two integers a, b. The objective of the fol-
lowing instructions is to show that ab = ba.

Implementation

1. Using declaration I:7, show that ab

(a) = 〈po(a) po(b) + ne(a) ne(b),po(a) ne(b) +
ne(a) po(b)〉

(b) = 〈po(b) po(a) + ne(b) ne(a),po(b) ne(a) +
ne(b) po(a)〉

(c) = ba.

Procedure I:12(1.77)

Objective

Choose an integer a. The objective of the following
instructions is to show that 1a = a.

Implementation

1. Using declaration I:7, show that 1a

(a) = 〈1, 0〉〈po(a),ne(a)〉

(b) = 〈1 po(a) + 0 ne(a), 1 ne(a) + 0 po(a)〉

(c) = 〈po(a),ne(a)〉

(d) = a.

Procedure I:13(1.78)

Objective

Choose three integers a, b, c. The objective of the
following instructions is to show that a(b + c) =
ab+ ac.

Implementation

1. Using declaration I:4 and declaration I:7, show
that a(b+ c)

(a) = 〈po(a),ne(a)〉〈po(b)+po(c),ne(b)+ne(c)〉

(b) = 〈po(a)(po(b) + po(c)) + ne(a)(ne(b) +
ne(c)),po(a)(ne(b) + ne(c)) + ne(a)(po(b) +
po(c))〉

(c) = 〈(po(a) po(b) + ne(a) ne(b)) +
(po(a) po(c) + ne(a) ne(c)), (po(a) ne(b) +
ne(a) po(b)) + (po(a) ne(c) + ne(a) po(c))〉

(d) = 〈po(a) po(b) + ne(a) ne(b),po(a) ne(b) +
ne(a) po(b)〉 + 〈po(a) po(c) + ne(a) ne(c),
po(a) ne(c) + ne(a) po(c)〉

(e) = ab+ ac.

Procedure I:14(1.91)

Objective

Choose an integer a. The objective of the follow-
ing instructions is to show that (−1)2a = 1 and
(−1)2a+1 = −1.

Implementation

1. Show that (−1)2 = (−1)(−1) + 1 + (−1) =
(−1)((−1) + 1) + 1 = (−1)0 + 1 = 1.

2. Hence show that (−1)2a = ((−1)2)a = 1a =
1.

3. Also show that (−1)2a+1 = (−1)2a(−1) =
1(−1) = −1.
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Declaration I:8(1.30)

The phrases ”a < b” and ”b > a”, where a, b are
rational numbers, will be used as a shorthand for
”po(a) + ne(b) < ne(a) + po(b)”.

Procedure I:15(1.79)

Objective

Choose four integers a, b, c, d such that a < b, a = c
and b = d. The objective of the following instruc-
tions is to show that c < d.

Implementation

1. Show that po(a) + ne(c) = ne(a) + po(c) using
declaration I:3.

2. Show that po(b) + ne(d) = ne(b) + po(d) using
declaration I:3.

3. Show that po(a) + ne(b) < ne(a) + po(b) using
declaration I:8.

4. Hence show that po(c) + ne(d)

(a) = (ne(a)+po(c))+(po(b)+ne(d))−ne(a)−
po(b)

(b) = (po(a)+ne(c))+(ne(b)+po(d))−ne(a)−
po(b)

(c) = (po(a) + ne(b)) + ne(c) + po(d)− ne(a)−
po(b)

(d) < (ne(a) + po(b)) + ne(c) + po(d)− ne(a)−
po(b)

(e) = ne(c) + po(d).

5. Hence show that c < d using declaration
I:8.

Procedure I:16(1.80)

Objective

Choose three integers a, b, c such that a < b. The
objective of the following instructions is to show that
a+ c < b+ c.

Implementation

1. Show that po(a) + ne(b) < ne(a) + po(b) using
declaration I:8.

2. Hence show that po(a+ c) + ne(b+ c)

(a) = po(a) + po(c) + ne(b) + ne(c)

(b) = (po(a) + ne(b)) + po(c) + ne(c)

(c) = (ne(a) + po(b)) + po(c) + ne(c)

(d) = ne(a) + ne(c) + po(b) + po(c)

(e) = ne(a+ c) + po(b+ c).

3. Hence show that a+ c < b+ c using dec-
laration I:8.

Procedure I:17(1.81)

Objective

Choose two integers a, b. The objective of the fol-
lowing instructions is to show that a < b, a = b and
a > b.

Implementation

1. Show that either

(a) po(a) + ne(b) < ne(a) + po(b)

(b) po(a) + ne(b) = ne(a) + po(b)

(c) po(a) + ne(b) > ne(a) + po(b)

2. Hence show that either

(a) a < b using declaration I:8 given that
po(a) + ne(b) < ne(a) + po(b).

(b) a = b using declaration I:3 given that
po(a) + ne(b) = ne(a) + po(b).

(c) a > b using declaration I:8 given that
po(a) + ne(b) > ne(a) + po(b).

Procedure I:18(1.85)

Objective

Choose two integers a, b such that 0 < a and 0 < b.
The objective of the following instructions is to show
that 0 < a+ b.

Implementation

1. Show that ne(a) = po(0) + ne(a) < ne(0) +
po(a) = po(a) using declaration I:8.

2. Show that ne(b) = po(0) + ne(b) < ne(0) +
po(b) = po(b) using declaration I:8.
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3. Show that po(0) + ne(a + b) = ne(a + b) =
ne(a) + ne(b) < po(a) + po(b) = po(a + b) =
ne(0) + po(a+ b).

4. Hence show that 0 < a + b given that
po(0) + ne(a+ b) < ne(0) + po(a+ b).

Procedure I:19(1.86)

Objective

Choose two integers a, b such that 0 < a and 0 < b.
The objective of the following instructions is to show
that 0 < ab.

Implementation

1. Show that ne(a) = po(0) + ne(a) < ne(0) +
po(a) = po(a) using declaration I:8.

2. Hence show that 0 < po(a)− ne(a).

3. Show that ne(b) = po(0) + ne(b) < ne(0) +
po(b) = po(b) using declaration I:8.

4. Hence show that 0 < po(b)− ne(b).

5. Hence show that 0 < ab

(a) given that po(0) + ne(ab) = ne(a) po(b) +
po(a) ne(b) < po(a) po(b) + ne(a) ne(b) =
ne(0) + po(ab)

(b) given that ne(a)(po(b) − ne(b)) <
po(a)(po(b)− ne(b))

(c) given that 0 < (po(a)−ne(a))(po(b)−ne(b)).

Declaration I:9(1.34)

The notation ‖a‖ will be used as a shorthand for the
following expression:

1. −a if a < 0

2. a if a ≥ 0

Procedure I:20(1.87)

Objective

Choose two integers a, b. The objective of the fol-
lowing instructions is to show that ‖ab‖ = ‖a‖‖b‖.

Implementation

1. If a ≥ 0 and b ≥ 0, then do the following:

(a) Show that ‖ab‖ = ab = ‖a‖‖b‖ given that
ab ≥ 0.

2. Otherwise if a < 0 and b ≥ 0, then do the
following:

(a) Show that ‖ab‖ = −(ab) = (−a)b =
‖a‖‖b‖ given that ab < 0.

3. Otherwise if a ≥ 0 and b < 0, then do the
following:

(a) Show that ‖ab‖ = −(ab) = a(−b) =
‖a‖‖b‖ given that ab < 0.

4. Otherwise do the following:

(a) Show that ‖ab‖ = ab = (−a)(−b) =
‖a‖‖b‖.

i. given that ab > 0

ii. given that a < 0 and b < 0.

Procedure I:21(1.88)

Objective

Choose two integers a, b. The objective of the follow-
ing instructions is to show that ‖a+ b‖ ≤ ‖a‖+ ‖b‖.

Implementation

1. If a+ b ≥ 0, then do the following:

(a) Show that ‖a+ b‖ = a+ b ≤ ‖a‖+ ‖b‖

i. given that a ≤ ‖a‖

ii. and b ≤ ‖b‖.

2. Otherwise do the following:

(a) Show that ‖a + b‖ = −(a + b) = (−a) +
(−b) ≤ ‖a‖+ ‖b‖

i. given that −a ≤ ‖a‖

ii. and −b ≤ ‖b‖

iii. and a+ b < 0.

Procedure I:22(1.89)

Objective

Choose two integers a, b. The objective of the follow-
ing instructions is to show that ‖a‖−‖b‖ ≤ ‖a− b‖.
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Implementation

1. Show that ‖a‖ = ‖b+ (a− b)‖ ≤ ‖b‖+ ‖a− b‖
using procedure I:21.

2. Hence show that ‖a‖ − ‖b‖ ≤ ‖a− b‖.

Declaration I:10(1.03)

The notation sgn(a) will be used as a shorthand for
the following expression:

1. −1 if a < 0

2. 0 if a = 0

3. 1 if a > 0

Declaration I:11(sun0902201144)

The notation H(a) will be used as a shorthand for
the following expression:

1. 0 if a < 0

2. 1 if a ≥ 0

Procedure I:23(1.90)

Objective

Choose an integer a. The objective of the following
instructions is to show that a = sgn(a)‖a‖.

Implementation

1. If a > 0, then do the following:

(a) Show that a = 1a = sgn(a)‖a‖

i. given that ‖a‖ = a

ii. and sgn(a) = 1.

2. If a = 0, then do the following:

(a) Show that a = 0 = sgn(a)0 = sgn(a)‖a‖
given that ‖a‖ = a = 0.

3. Otherwise if a < 0, then do the following:

(a) Show that a = (−1)(−a) = sgn(a)‖a‖

i. given that ‖a‖ = −a

ii. and sgn(a) = −1.
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Chapter 2

Modular Arithmetic

Procedure I:24(1.00)

Objective

Choose an integer a and a positive integer b. The
objective of the following instructions is to con-
struct integers n and m such that a = nb + m and
0 ≤ m < b.

Implementation

1. Let n = 0.

2. While (n+ 1)b ≤ a, do the following:

(a) Let n receive n+ 1.

(b) Show that nb ≤ a.

3. While nb > a, do the following:

(a) Let n receive n− 1.

(b) Show that (n+ 1)b > a.

4. Hence show that nb ≤ a and (n+ 1)b > a.

5. Let m = a− nb.

6. Now show that b > a − nb = m ≥ 0 and
a = bn+ a− nb = nb+m.

7. Yield 〈n,m〉.

Declaration I:12(1.00)

The notation a div b will be used to refer to the first
part of the pair yielded by executing procedure I:24
on 〈a, b〉.

Declaration I:13(1.01)

The notation a mod b will be used to refer to the sec-
ond part of the pair yielded by executing procedure
I:24 on 〈a, b〉.

Declaration I:14(1.02)

The notation a ≡ b (mod c) will be used as a short-
hand for ”a mod c = b mod c”.

Procedure I:25(1.01)

Objective

Choose four integers a, b, c, d and a positive integer
e in such a way that a ≡ c (mod e) and b ≡ d
(mod e). The objective of the following instructions
is to show that a+ b ≡ c+ d (mod e).

Implementation

1. Show that a+ b

(a) ≡ (adiv e)e+(a mod e)+(bdiv e)e+(b mod
e)

(b) ≡ (a mod e) + (b mod e)

(c) ≡ (c mod e) + (d mod e)

(d) ≡ (cdiv e)e+(c mod e)+(ddiv e)e+(d mod
e)

(e) ≡ c+ d (mod e).

18



Procedure I:26(1.02)

Objective

Choose four integers a, b, c, d and a positive integer
e in such a way that a ≡ c (mod e) and b ≡ d
(mod e). The objective of the following instructions
is to show that ab ≡ cd (mod e).

Implementation

1. Show that ab

(a) ≡ ((adiv e)e+(a mod e))((bdiv e)e+(b mod
e))

(b) ≡ (a div e)(bdiv e)e2 + (a div e)(b mod e)e+
(a mod e)(bdiv e)e+ (a mod e)(b mod e)

(c) ≡ (a mod e)(b mod e)

(d) ≡ (c mod e)(d mod e)

(e) ≡ (cdiv e)(ddiv e)e2 + (cdiv e)(d mod e)e+
(c mod e)(ddiv e)e+ (c mod e)(d mod e)

(f) ≡ cd (mod e).

Procedure I:27(1.03)

Objective

Choose an integer a and two positive integers b, c.
The objective of the following instructions is to show
that (a mod bc) mod b = a mod b.

Implementation

1. Show that (a mod bc) mod b = (a −
(a div bc)bc) mod b = a mod b.

Procedure I:28(1.04)

Objective

Choose a positive integer a and four integers b1,
b0, c1, c0 such that 0 ≤ b0 < a, 0 ≤ c0 < a, and
b1a + b0 = c1a + c0. The objective of the following
instructions is to show that b1 = c1 and b0 = c0.

Implementation

1. Show that b0 = b0 mod a = (b1a + b0) mod
a = (c1a+ c0) mod a = c0 mod a = c0.

2. Therefore show that b1 = c1 given that
b1a = c1a.

Procedure I:29(1.05)

Objective

Choose an integer a and two positive integers b, c.
The objective of the following instructions is to show
that ca mod cb = c(a mod b) and that cadiv cb =
adiv b.

Implementation

1. Show that bc(adiv b) + c(a mod b) =
c(b(a div b) + a mod b) = ca = cb(cadiv cb) +
ca mod cb.

2. Show that 0 ≤ a mod b < b.

3. Show that 0 ≤ c(a mod b) < cb.

4. Show that 0 ≤ ca mod cb < cb.

5. Hence show that c(a mod b) = ca mod cb
and a div b = cadiv cb using procedure
I:28.

Procedure I:30(1.06)

Objective

Choose two integers a, b and a positive integer c such
that a mod c+b mod c < c. The objective of the fol-
lowing instructions is to show that a div c+bdiv c =
(a+ b) div c and a mod c+ b mod c = (a+ b) mod c.

Implementation

1. Show that a = c(adiv c) + a mod c.

2. Show that b = c(bdiv c) + b mod c.

3. Therefore show that a+b = c(adiv c+bdiv c)+
(a mod c+ b mod c).

4. Show that 0 ≤ a mod c+ b mod c < c.

5. Also show that a+ b = ((a+ b) div c)c+ (a+
b) mod c.

6. Show that 0 ≤ (a+ b) mod c < c.

7. Hence show that a div c + bdiv c = (a +
b) div c and a mod c+b mod c = (a+b) mod c
using procedure I:28.
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Procedure I:31(1.07)

Objective

Choose two integers a, b and a positive integer c
such that a mod c + b mod c ≥ c. The objec-
tive of the following instructions is to show that
1 + a div c + bdiv c = (a + b) div c and a mod c +
b mod c− c = (a+ b) mod c.

Implementation

1. Show that a = c(a div c) + a mod c.

2. Show that b = c(bdiv c) + b mod c.

3. Therefore show that a+b = c(adiv c+bdiv c)+
a mod c + b mod c = c(1 + adiv c + bdiv c) +
(a mod c+ b mod c− c).

4. Show that c ≤ a mod c+ b mod c < 2c.

5. Therefore show that 0 ≤ a mod c+ b mod c−
c < c.

6. Also show that a+ b = c((a+ b) div c) + (a+
b) mod c.

7. Show that 0 ≤ (a+ b) mod c < c.

8. Therefore show that 1 + a div c + bdiv c =
(a + b) div c and a mod c + b mod c − c =
(a+ b) mod c using procedure I:28.

Procedure I:32(1.08)

Objective

Choose an integer a and two positive integers b,
c. The objective of the following instructions is to
show that a div bc = (a div b) div c and a mod bc =
((adiv b) mod c)b+ a mod b.

Implementation

1. Show that a = (((a div b) div c)c +
(a div b) mod c)b+a mod b = ((a div b) div c)bc+
((a div b) mod c)b+ a mod b

(a) given that a = (adiv b)b+ a mod b

(b) given that a div b = ((adiv b) div c)c +
(a div b) mod c.

2. Show that 0 ≤ ((a div b) mod c)b ≤ cb−b given
that 0 ≤ (a div b) mod c ≤ c− 1.

3. Therefore show that 0 ≤ ((a div b) mod c)b +
a mod b < cb given that 0 ≤ a mod b < b.

4. Now show that a = (adiv bc)bc+a mod bc and
0 ≤ a mod bc < bc.

5. Therefore show that (adiv b) div c =
adiv bc and ((adiv b) mod c)b + a mod b =
a mod bc using procedure I:28.

Procedure I:33(1.09)

Objective

Choose an integer a and a non-negative integer b.
The objective of the following instructions is to con-
sruct integers c, d, e, f, g such that a = cd, b = ce,
fa + gb = c, and if b = 0, then c = |a|, otherwise
0 < c ≤ b.

Implementation

1. If b = 0, then do the following:

(a) Show that a = sgn(a)|a|.

(b) Show that b = 0|a|.

(c) Show that |a| = sgn(a)a+ 0b.

(d) Yield 〈|a|, sgn(a), 0, sgn(a), 0〉.

2. Otherwise do the following:

(a) Show that 0 ≤ a mod b < b.

(b) Use procedure I:33 on 〈b, a mod b〉 to con-
struct 〈c, d, e, f, g〉 and show that:

i. b = cd

ii. a mod b = ce

iii. c = ‖b‖ if a mod b = 0, otherwise 0 < c ≤
a mod b

iv. fb+ g(a mod b) = c.

(c) Hence show that a = (a div b)b + (a mod
b) = c(d(a div b) + e).

(d) Also show that (f − g(adiv b))b + ga =
fb+ g(a− (a div b)b) = fb+ g(a mod b) = c.

(e) If a mod b = 0, then do the following:

i. Show that 0 < b = c ≤ b given that
b ≥ 0, b 6= 0, and c = ‖b‖ = b.

(f) Otherwise do the following:

i. Show that 0 < c ≤ a mod b < b given
0 < c ≤ a mod b.
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(g) Therefore yield 〈c, d(adiv b) + e, d, g, f −
g(a div b)〉.

Declaration I:15(1.04)

The notation (a, b) will be used to refer to the first
part of the quintuple constructed by using procedure
I:33 on the pair 〈a, b〉.

Procedure I:34(1.10)

Objective

Choose an integer a and a positive integer b. Let 1 ≤
c ≤ b be the largest integer such that a mod c = 0
and b mod c = 0. The objective of the following in-
structions is to either show that 0 6= 0 or (a, b) = c.

Implementation

1. Use procedure I:33 on 〈a, b〉 to construct 〈d, e,
f, g, h〉 and show that:

(a) a = ed

(b) b = fd

(c) ga+ hb = d

(d) 0 < d ≤ b.

2. If d > c, then do the following:

(a) Show that a mod d 6= 0 or b mod d 6= 0 given
that 0 < d ≤ b is larger than the largest inte-
ger such that a mod c = 0 and b mod c = 0.

(b) If a mod d 6= 0, then do the following:

i. Show that a mod d = 0 given that a = ed.

ii. Hence show that 0 6= 0 given that
a mod d 6= 0 and a mod d = 0.

iii. Abort procedure.

(c) Otherwise if b mod d 6= 0, then do the fol-
lowing:

i. Show that b mod d = 0 given that b = fd.

ii. Hence show that 0 6= 0 given that
b mod d 6= 0 and b mod d = 0.

iii. Abort procedure.

3. Otherwise if d < c, then do the following:

(a) Show that 0 ≡ gc(a div c) + hc(bdiv c) =
g(c(a div c) +a mod c) +h(c(bdiv c)+ b mod
c) = ga+ hb = d 6≡ 0 (mod c) given that:

i. ga+ hb = d

ii. a mod c = 0

iii. b mod c = 0.

(b) Hence show that 0 6= 0.

(c) Abort procedure.

4. Otherwise show that (a, b) = d = c.

Procedure I:35(1.11)

Objective

Choose integers a, c, d, j and a non-negative integer
b. Use procedure I:33 on 〈a, b〉 to construct 〈e, f, g,
h, i〉. The objective of the following instructions is
to show that ca+ db = (c+ gj)a+ (d− fj)b.

Implementation

1. Show that (c+ gj)a+ (d− fj)b = ca+ db+
gja− fjb = ca+ db+ gjef − fjeg = ca+ db.

Procedure I:36(1.12)

Objective

Choose integers a, c, d and a non-negative integer b
such that ca + db = (a, b). Use procedure I:33 on
〈a, b〉 to construct 〈e, f, g, h, i〉. The objective of the
following instructions is to construct a j such that
c = h+ gj and d = i− fj.

Implementation

1. Use procedure I:33 on 〈a, b〉 to show that:

(a) a = ef

(b) b = eg

(c) ha+ ib = e.

2. Show that cf + dg = 1

(a) given that cef + deg = ca+ db = (a, b) = e

(b) given that a = ef and b = eg.

3. Show that hf + ig = 1

(a) given that hef + ieg = ha+ ib = e

(b) given that a = ef and b = eg.

4. Let j = ci− hd.
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5. Show that c = h+cig−hdg = h+g(ci−hd) =
h+ gj

(a) given that c − cig = c(1 − ig) = chf =
h(1− dg) = h− hdg

(b) given that cf = 1− dg.

6. Show that d = i−icf+dhf = i−f(ic−dh) =
i− fj

(a) given that d − dhf = d(1 − hf) = dig =
i(1− cf) = i− icf

(b) given that dg = 1− cf .

7. Yield 〈j〉.

Procedure I:37(1.13)

Objective

Choose an integer a and a positive integer b such
that 0 < (a, b) < b. The objective of the following
instructions is to show that 0 6= 0 or a mod b 6= 0.

Implementation

1. If a mod b = 0, then do the following:

(a) Show that af ≡ 0f ≡ 0 (mod b) given that
a mod b = 0.

(b) Use procedure I:33 on 〈a, b〉 to construct 〈c,
d, e, f, g〉 and show that:

i. fa+ gb = c = (a, b)

ii. 0 < c = (a, b) ≤ b.

(c) Hence show that fa ≡ (a, b) 6≡ 0 (mod b)
given that 0 < (a, b) < b.

(d) Hence show that 0 6= 0 given that 0 ≡ af 6≡
0 (mod b).

(e) Abort procedure.

2. Otherwise show that a mod b 6= 0.

Procedure I:38(1.14)

Objective

Choose five integers a, d, e, f, g and two non-negative
integers b, c such that a = cd, b = ce, and fa+ gb =
c. The objective of the following instructions is to
show that 0 < 0 or (a, b) = c.

Implementation

1. Use procedure I:33 on 〈a, b〉 to construct 〈u, v,
x, y, z〉 and show that:

(a) u ≥ 0

(b) a = uv

(c) b = xu

(d) u = ya+ zb.

2. Hence show that c = fa+ gb = (fv + gx)u.

3. If u = 0, then do the following:

(a) Show that c = (fv+gx)u = 0 = u = (a, b).

(b) Yield.

4. Show that u = ya+zb = (yd+ze)c given that
u = ya+ zb, a = cd, and b = ce.

5. If c = 0, then do the following:

(a) Show that (a, b) = u = (yd+ ze)c = 0 = c.

(b) Yield.

6. Show that fv + gx = yd+ ze = ±1

(a) given that (fv + gx)(yd+ ze) = 1

(b) given that c = (fv + gx)u = (fv + gx)(yd+
ze)c and c > 0.

7. If fv+gx = yd+ ze = −1, then do the follow-
ing:

(a) Show that u = (yd+ze)c = (−1)c < 0 given
that u = (yd+ ze)c and c > 0.

(b) Hence show that 0 ≤ u < 0 given that
u ≥ 0.

(c) Abort procedure.

8. Otherwise, do the following:

(a) Show that fv + gx = yd+ ze = 1.

(b) Hence show that c = (fv+gx)u = (1)u =
(a, b) given that c = (fv + gx)u.

Procedure I:39(1.15)

Objective

Choose an integer a and a non-negative integer b.
The objective of the following instructions is to show
that 0 < 0 or (a, b) = (−a, b).
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Implementation

1. Use procedure I:33 on 〈a, b〉 to construct 〈c, d,
e, f, g〉 and show that:

(a) a = dc

(b) b = ec

(c) fa+ gb = c.

2. Hence show that −a = (−d)c.

3. Also show that (−f)(−a) + gb = c.

4. Use procedure I:38 on 〈−a, b, c,−d, e,−f,
g〉 to show that (−a, b) = c = (a, b).

Procedure I:40(1.16)

Objective

Choose two non-negative integers a, b. The objective
of the following instructions is to show that 0 < 0
or (a, b) = (b, a).

Implementation

1. Use procedure I:33 on 〈a, b〉 to construct 〈c, d,
e, f, g〉 and show that:

(a) b = ec

(b) a = dc

(c) gb+ fa = c.

2. Use procedure I:38 on 〈b, a, c, e, d, g, f〉 to
show that (b, a) = c = (a, b).

Procedure I:41(1.17)

Objective

Choose two integers a, b and a positive integer c such
that a ≡ b (mod c). The objective of the following
instructions is to show that 0 < 0 or (a, c) = (b, c).

Implementation

1. Use procedure I:33 on 〈a, c〉 to construct 〈d, e,
f, g, h〉 and show that:

(a) a = ed

(b) c = fd

(c) ga+ hc = d.

2. Let j = bdiv c− adiv c.

3. Hence show that b = a + jc = ed + jfd =
(e+ jf)d.

4. Also show that gb + (h − gj)c = g(a + jc) +
(h− gj)c = ga+ hc = d given that b = a+ jc.

5. Use procedure I:38 on 〈b, c, d, e + jf, f, g,
h− gj〉 to show that (b, c) = d = (a, c).

Procedure I:42(1.18)

Objective

Choose an integer a and two non-negative integers
b, c. The objective of the following instructions is to
show that either 0 < 0 or (ca, cb) = c(a, b).

Implementation

1. Use procedure I:33 on 〈a, b〉 to construct 〈d, e,
f, g, h〉 and show that:

(a) a = ed

(b) b = df

(c) ga+ hb = d.

2. Hence show that ca = e(cd), cb = f(cd), and
g(ca) + h(cb) = cd.

3. Use procedure I:38 on 〈ca, cb, cd, e, f, g, h〉
to show that (ca, cb) = cd = c(a, b).

Procedure I:43(1.19)

Objective

Choose an integer a and two non-negative integers
b, c. The objective of the following instructions is to
show that either 0 < 0 or (a, (b, c)) = ((a, b), c).

Implementation

1. Use procedure I:33 on 〈a, b〉 to construct 〈d0,
e0, f0, g0, h0〉 and show that:

(a) a = d0e0

(b) b = d0f0

(c) g0a+ h0b = d0.

2. Use procedure I:33 on 〈b, c〉 to construct 〈d1,
e1, f1, g1, h1〉 and show that:

(a) b = d1e1

(b) c = d1f1
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(c) g1b+ h1c = d1.

3. Use procedure I:33 on 〈(a, b), c〉 to construct
〈d2, e2, f2, g2, h2〉 and show that:

(a) (a, b) = d2e2

(b) c = d2f2

(c) g2(a, b) + h2c = d2.

4. Show that a = d0e0 = e0(a, b) = e0d2e2 =
e0e2((a, b), c).

5. Also show that (b, c)

(a) = g1b+ h1c

(b) = g1d0f0 + h1d2f2

(c) = g1f0(a, b) + h1f2((a, b), c)

(d) = g1f0d2e2 + h1f2((a, b), c)

(e) = g1f0e2((a, b), c) + h1f2((a, b), c)

(f) = (g1f0e2 + h1f2)((a, b), c).

6. Also show that ((a, b), c)

(a) = d2

(b) = g2(a, b) + h2c

(c) = g2d0 + h2d1f1

(d) = g2(g0a+ h0b) + h2f1(b, c)

(e) = g2g0a+ g2h0d1e1 + h2f1(b, c)

(f) = g2g0a+ g2h0e1(b, c) + h2f1(b, c)

(g) = g2g0a+ (g2h0e1 + h2f1)(b, c).

7. Use procedure I:38 on 〈a, (b, c), ((a, b), c),
e0e2, g1f0e2 + h1f2, g2g0, g2h0e1 + h2f1〉 to
show that ((a, b), c) = (a, (b, c)).

Declaration I:16(1.05)

The notation (a0, a1, · · · , an−1) will be used to con-
textually refer to one of the following integers:

1. ((a0), (a1, a2, · · · , an−1))

2. ((a0, a1), (a2, a3, · · · , an−1))

3.
...

4. ((a0, a1, · · · , an−2), (an−1))

Procedure I:44(1.20)

Objective

Choose two integers a, b and a non-negative integer
c such that (a, c) = 1 and (b, c) = 1. The objective
of the following instructions is to show that either
0 < 0 or (ab, c) = 1.

Implementation

1. Use procedure I:33 on 〈a, c〉 to construct 〈d, e,
f, g, h〉 and show that ga+hc = d = (a, c) = 1.

2. Use procedure I:33 on 〈b, c〉 to construct 〈t, u,
v, w, x〉 and show that wb+xc = t = (b, c) = 1.

3. Hence show that (gw)(ab) + (gax + wbh +
hxc)c = (ga+ hc)(wb+ xc) = 1.

4. Use procedure I:38 on 〈ab, c, 1, ab, c, gw,
gax+ wbh+ hxc〉 to show that (ab, c) = 1.

Procedure I:45(1.21)

Objective

Choose an integer a and two non-negative integers
b, c such that (a, bc) = 1. The objective of the fol-
lowing instructions is to show that either 0 < 0 or
(a, b) = 1.

Implementation

1. Use procedure I:33 on 〈a, bc〉 to construct 〈d, e,
f, g, h〉 and show that ga+(hc)b = ga+h(bc) =
d = (a, bc) = 1.

2. Now use procedure I:38 on 〈a, b, 1, a, b, g,
hc〉 to show that (a, b) = 1.

Declaration I:17(1.06)

The phrase ”prime number” will be used to refer
to integers a such that a > 1 and a mod k 6= 0 for
1 < k < a.

Procedure I:46(1.22)

Objective

Choose an integer a and a prime b such that
a mod b 6= 0. The objective of the following instruc-
tions is to show that either 0 6= 0 or (a, b) = 1.
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Implementation

1. Use procedure I:33 on 〈a, b〉 to construct 〈c, d,
e, f, g〉 and show that:

(a) a = cd

(b) b = ce

(c) 0 < c ≤ b.

2. If c = b, then do the following:

(a) Show that a mod b = 0 given that a = cd =
bd.

(b) Hence show that 0 6= 0 given that
a mod b 6= 0.

(c) Abort procedure.

3. Otherwise if 1 < c < b, then do the following:

(a) Show that b mod c = 0 given that b = ce.

(b) Hence show that 0 6= 0 given that b is
prime.

(c) Abort procedure.

4. Otherwise, do the following:

(a) Show that (a, b) = c = 1.

Procedure I:47(1.23)

Objective

Choose two integers a, b and a prime c such that
a mod c 6= 0 and b mod c 6= 0. The objective of the
following instructions is to show that either 0 6= 0
or ab mod c 6= 0.

Implementation

1. Use procedure I:46 on 〈a, c〉 to show that (a,
c) = 1.

2. Use procedure I:46 on 〈b, c〉 to show that (b,
c) = 1.

3. Use procedure I:44 on 〈a, b, c〉 to show that
0 < (ab, c) = 1 < c.

4. Use procedure I:37 on 〈ab, c〉 to show
that ab mod c 6= 0.

Declaration I:18(1.07)

The notation |a| will be used to refer to the number
of items in the list a.

Declaration I:19(1.10)

The notation a_b will be used to refer to the list
formed by concatenating a and b.

Declaration I:20(1.31)

The notation f(R), where R is a list and f [r] is a
function of r, will contextually be used as a short-
hand for the list 〈f(R0), f(R1), · · · , f(R|R|−1)〉.

Declaration I:21(1.09)

The notation a∗, where a is a list, will be used as a
shorthand for 1 if a is empty, otherwise it will be a
shorthand for the product of the entries of a.

Declaration I:22(1.08)

The notation
∏R
r f(r), where R is a list and f [r]

is a function of r, will be used as a shorthand for
f(R)∗.

Procedure I:48(1.24)

Objective

Choose a positive integer a. The objective of the
following instructions is to construct a list of prime
numbers b such that a = b∗.

Implementation

1. If a = 1, then do the following:

(a) Show that a = 1 = 〈〉∗.

(b) Hence yield 〈〉.

2. Otherwsie, do the following:

(a) Show that a > 1.

(b) If there is a c ∈ [2 : a] such that a mod c = 0,
then do the following:

i. Show that a = (a div c)c.

ii. Hence show that 1 < adiv c < a.

iii. Use procedure I:48 on 〈adiv c〉 to con-
struct 〈d〉 and show that:

A. every element of d is prime.

B. adiv c = d∗.

iv. Hence show that d is non-empty given that
1 < adiv c = d∗.
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v. Use procedure I:48 on 〈c〉 to construct 〈e〉
and show that:

A. every element of e is prime.

B. c = e∗.

vi. Hence show that e is non-empty given that
1 < c = e∗.

vii. Hence show that d_e is a non-empty
list of prime numbers such that a =
(a div c)c = d∗e∗ = (d_e)∗.

viii. Yield 〈d_e〉.

(c) Otherwise do the following:

i. Show that a is prime.

ii. Yield 〈a〉.

Procedure I:49(1.25)

Objective

Choose a prime a and a list of primes b such that
b∗ ≡ 0 (mod a). The objective of the following in-
structions is to either show that 0 = 1 or to con-
struct a k such that a = bk.

Implementation

1. Show that a > 1 given that a is prime.

2. If |b| = 0, then do the following:

(a) Show that 1 = b∗ ≡ 0 (mod a).

(b) Hence show that 0 = 1 given that a > 1.

(c) Abort procedure.

3. Otherwise if 0 6∈ b mod a, then do the follow-
ing:

(a) Show that b∗ 6≡ 0 (mod a) using procedure
I:47.

(b) Hence show that 0 6= 0 given that b∗ ≡ 0
(mod a).

(c) Abort procedure.

4. Otherwise do the following:

(a) Let k be such that bk mod a = 0.

(b) Show that bk = (bk div a)a.

(c) Hence show that bk div a ≥ 1.

(d) If bk div a > 1, then do the following:

i. Show that 1 < a < bk given that:

A. a > 1

B. bk div a > 1

C. bk = (bk div a)a.

ii. Hence show that bk mod a 6= 0 given that
bk is prime and 1 < a < bk.

iii. Hence show that 0 6= bk mod a = 0
given that bk mod a = 0.

iv. Abort procedure.

(e) Otherwise do the following:

i. Show that bk = a given that bk div a =
1.

ii. Yield 〈k〉.

Declaration I:23(1.11)

The notation [a : b] will be used as a shorthand for
the list:

1. 〈a, a+ 1, · · · , b− 1〉, if b > a

2. 〈〉, if b = a

3. 〈a− 1, a− 2, · · · , b〉, if b < a

Procedure I:50(1.26)

Objective

Choose two lists of primes a, b such that a∗ = b∗.
The objective of the following instructions is to show
that either 1 > 1 or a is included in b.

Implementation

1. If |a| = 0, then do the following:

(a) Show that a is included in b.

2. Otherwise, do the following:

(a) Show that |a| > 0.

(b) Show that b∗ ≡ a∗ ≡ 0 (mod a0).

(c) Use procedure I:49 on 〈a0, b〉 to construct 〈k〉
and show that bk = a0.

(d) Now show that (a[1:|a|])∗ = (b[0:k]_[k+1:|b|])∗.

(e) Now use procedure I:50 on 〈a[1:|a|],
b[0:k]_[k+1:|b|]〉 to show that a[1:|a|] is in-
cluded in b[0:k]_[k+1:|b|]〉.
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(f) Hence show that a is included in b.

Procedure I:51(1.27)

Objective

Choose two lists of primes a, b such that a∗ = b∗.
The objective of the following instructions is to show
that either 1 > 1 or a is a rearrangement of b.

Implementation

1. Use procedure I:50 on 〈a, b〉 to show that a is
included in b.

2. Use procedure I:50 on 〈b, a〉 to show that b is
included in a.

3. Hence show that a is a rearrangement of
b.

Procedure I:52(1.28)

Objective

Choose a positive integer a. The objective of the fol-
lowing instructions is to either show that 0 = 1 or
to construct a prime b such that b > a and [a+1 : b]
does not contain a prime.

Implementation

1. Show that a! + 1 > 1.

2. Use procedure I:48 on 〈a!+1〉 to construct 〈d〉
and show that:

(a) a! + 1 = d∗

(b) every element of d is prime.

3. Hence show that |d| > 0 given that a! + 1 > 1.

4. Hence show that (a! + 1) mod d0 = 0.

5. If d0 ∈ [2 : a+ 1], then do the following:

(a) Show that a! + 1 ≡ 1 (mod d0)

i. given that a! (mod d0) ≡ 0

ii. given that d0 ∈ [2 : a+ 1].

(b) Show that 0 ≡ a! + 1 (mod d0)

i. given that (a! + 1) mod d0 = 0

ii. given that a! + 1 = d∗.

(c) Hence show that 0 = 1.

(d) Abort procedure.

6. Otherwise do the following:

(a) Show that d0 is prime given that every
element of d is prime.

(b) Hence show that d0 > a given that
d0 > 1 and d0 6∈ [2 : a+ 1].

(c) Let b be the least prime in [a+1 : d0+1].

(d) Yield 〈b〉.

Procedure I:53(1.29)

Objective

Choose a positive integer a. The objective of the
following instructions is to construct a positive in-
teger b such that [b + 1 : b + a] does not contain a
prime.

Implementation

1. Let b = a! + 1.

2. For i ∈ [1 : a], do the following:

(a) Show that b + i = a! + 1 + i = i!(i +
1)(i+ 2) · · · (a) + 1 + i = (1 + i)(i!(i+ 2)(i+
3) · · · (a) + 1).

(b) Therefore show that b+ i ≡ 0 (mod i+ 1).

(c) Also show that b+ i = a! + 1 + i > a! ≥ a ≥
i+ 1 > 1.

(d) Hence show that b+ i is not prime.

3. Yield 〈b〉.

Procedure I:54(1.30)

Objective

Choose two lists of primes a, b in such a way that
their intersection is empty. The objective of the fol-
lowing instructions is to show that 0 = 1 or (a∗,
b∗) = 1.

Implementation

1. Use procedure I:33 on 〈a∗, b∗〉 to construct 〈c,
d, e, f, g〉 and show that:

(a) 0 < c ≤ b∗
(b) a∗ = cd
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(c) b∗ = ce.

2. If c > 1, then do the following:

(a) Use procedure I:48 on 〈c〉 to construct 〈h〉
and show that c = h∗.

(b) Hence show that |h| > 0 given that h∗ = c >
1.

(c) Now show that a∗ = dc = dh∗ =
dh0(h[1:|h|])∗ ≡ 0 (mod h0).

(d) Use procedure I:49 on 〈h0, a〉 to construct
〈k〉 and show that h0 = ak.

(e) Now show that b∗ = ec = eh∗ =
eh0(h[1:|h|])∗ ≡ 0 (mod h0).

(f) Use procedure I:49 on 〈h0, b〉 to construct
〈m〉 and show that h0 = bm.

(g) Hence show that a and b intersect
given that ak = h0 = bm.

(h) Abort procedure.

3. Otherwise do the following:

(a) Show that (a∗, b∗) = c = 1 given that
0 < c ≤ b∗ and c ≤ 1.

Procedure I:55(1.31)

Objective

Choose two lists of primes a, b. Let c be the common
sublist with multiplicity of a and b. The objective
of the following instructions is to show that either
0 < 0 or (a∗, b∗) = c∗.

Implementation

1. Let d be the result of removing with multiplic-
ity elements of c from a.

2. Show that a∗ = c∗d∗.

3. Let e be the result of removing with multiplic-
ity elements of c from b.

4. Show that b∗ = c∗e∗.

5. Show that d and e share no common elements.

6. Therefore show that (a∗, b∗) = (c∗d∗,
c∗e∗) = c∗(d∗, e∗) = c∗ using procedure
I:42 and procedure I:54.

Procedure I:56(1.32)

Objective

Choose an integer a and a positive integer b. The
objective of the following instructions is to construct
integers c, f, e such that c = af , c = be, c(a, b) = ab,
and |a| ≤ |c| ≤ |a|b.

Implementation

1. Use procedure I:33 on 〈a, b〉 to construct 〈d, e,
f, g, h〉 and show that:

(a) a = de

(b) b = df

(c) d > 0.

2. Let c = af .

3. Show that c = af = def = be.

4. Show that c(a, b) = cd = afd = ab.

5. Show that 1 ≤ f ≤ b

(a) given that 0 < b = df

(b) and d > 0.

6. Therefore show that |a| ≤ |a|f ≤ |a|b.

7. Therefore show that |a| ≤ |c| ≤ |a|b.

8. Yield the tuple 〈c, f, e〉.

Declaration I:24(1.12)

The notation [a, b] will be used to refer to the first
part of the triple yielded by executing procedure I:56
on 〈a, b〉.

Procedure I:57(1.33)

Objective

Choose two positive integers a, b. The objective
of the following instructions is to show that either
0 < 0 or [a, b] = [b, a].

Implementation

1. Show that (a, b) > 0.

2. Show that [a, b](a, b) = ab = ba = [b, a](b,
a) = [b, a](a, b) using procedure I:40.

3. Therefore show that [a, b] = [b, a].
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Procedure I:58(1.34)

Objective

Choose an integer a and two positive integers b, c.
The objective of the following instructions is to show
that either 0 < 0 or [ca, cb] = c[a, b].

Implementation

1. Show that (ca, cb) > 0.

2. Show that [ca, cb](ca, cb) = cacb = c2ab =
c2[a, b](a, b) = c[a, b](ca, cb) using procedure
I:42.

3. Therefore show that [ca, cb] = c[a, b].

Procedure I:59(1.35)

Objective

Choose an integer a and two positive integers b, c.
The objective of the following instructions is to show
that either 0 < 0 or [[a, b], c] = [a, [b, c]].

Implementation

1. Using procedure I:43, show that (a, b)(ab, (ac,
bc))(b, c)[[a, b], c]

(a) = (ab, (ac, bc))(b, c)[(a, b)[a, b], (a, b)c]

(b) = (ab, (ac, bc))(b, c)[ab, (ac, bc)]

(c) = ab(ac, bc)(b, c)

(d) = abc(a, b)(b, c)

(e) = bc(a, b)(ab, ac)

(f) = (a, b)((ab, ac), bc)[(ab, ac), bc]

(g) = (a, b)(ab, (ac, bc))[(ab, ac), bc]

(h) = (a, b)(ab, (ac, bc))[a(b, c), [b, c](b, c)]

(i) = (a, b)(ab, (ac, bc))(b, c)[a, [b, c]].

2. Show that (a, b)(ab, (ac, bc))(b, c) > 0.

3. Therefore show that [[a, b], c] = [a, [b, c]].

Declaration I:25(1.13)

The notation [a0, a1, · · · , an−1] will be used to con-
textually refer to one of the following integers:

1. [[a0], [a1, a2, · · · , an−1]]

2. [[a0, a1], [a2, a3, · · · , an−1]]

3.
...

4. [[a0, a1, · · · , an−2], [an−1]]

Procedure I:60(1.36)

Objective

Choose three positive integers a, b, c. The objective
of the following instructions is to show that either
0 < 0 or ([a, b], c) = [(a, c), (b, c)].

Implementation

1. Using procedure I:56, procedure I:42, proce-
dure I:43, procedure I:40, and procedure I:34,
show that (a, b)((a, c), (b, c))([a, b], c)

(a) = ((a, c), (b, c))((a, b)[a, b], (a, b)c)

(b) = ((a, c), (b, c))(ab, (ac, bc))

(c) = (a2b, a2c, c2a, c2b, b2a, bac, b2c)

(d) = (a, b)(ab, ac, bc, c2)

(e) = (a, b)(a, c)(b, c)

(f) = (a, b)((a, c), (b, c))[(a, c), (b, c)].

2. Show that (a, b)((a, c), (b, c)) > 0.

3. Therefore show that ([a, b], c) = [(a, c), (b,
c)].

Procedure I:61(1.37)

Objective

Choose three positive integers a, b, c. The objective
of the following instructions is to show that either
0 < 0 or [(a, b), c] = ([a, c], [b, c]).

Implementation

1. Using procedure I:56, procedure I:42, proce-
dure I:43, procedure I:40, and procedure I:34,
show that ((a, b), c)(a, c)(b, c)[(a, b), c]

(a) = (a, c)(b, c)(a, b)c

(b) = (ab, ac, cb, c2)(a, b)c

(c) = (a2b, a2c, ac2, ab2, abc, cb2, bc2)c

(d) = (a, b, c)(ab, ac, bc)c

(e) = ((a, b), c)(ac(b, c), bc(a, c))

(f) = ((a, b), c)(a, c)(b, c)([a, c], [b, c]).
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2. Show that ((a, b), c)(a, c)(b, c) > 0.

3. Therefore show that [(a, b), c] = ([a, c], [b,
c]).
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Chapter 3

Congruence Equations

Declaration I:26(1.14)

The notation χb,d(a, c), where a, c are two inte-
gers and b, d are two positive integers such that
a ≡ c (mod (b, d)), will be used to refer to the result
yielded by executing the following instructions:

1. Use procedure I:33 on 〈b, d〉 to construct 〈f, g,
h, i, j〉.

2. Yield the tuple 〈(a + ((c − a) div(b,
d))ib) mod [b, d]〉.

Procedure I:62(1.39)

Objective

Choose three integers x, a, c and two positive in-
tegers b, d such that x ≡ a (mod b) and x ≡ c
(mod d). The objective of the following instructions
is to show that 0 6= 0 if a 6≡ c (mod (b, d)), otherwise
x ≡ χb,d(a, c) (mod [b, d]).

Implementation

1. Use procedure I:33 on 〈b, d〉 to construct 〈e, f,
g, h, i〉 and show that:

(a) b = ef

(b) d = eg

(c) hb+ id = e.

2. Let j = xdiv b− a div b.

3. Show that x = a + jb given that x ≡ a
(mod b).

4. Let k = xdiv d− cdiv d.

5. Show that x = c + kd given that x ≡ c
(mod d).

6. Therefore show that c− a = jb− kd.

7. If a 6≡ c (mod (b, d)), then do the following:

(a) Show that 0 6≡ c−a = jb−kd = jef−keg ≡
0 (mod e).

(b) Therefore show that 0 6= 0.

(c) Abort procedure.

8. Otherwise do the following:

(a) Let l = (c− a) div(b, d).

(b) Show that l(b, d) = le = c − a = jb − kd =
jef − keg given that c− a ≡ 0 (mod (b, d)).

(c) Hence show that l ≡ jf (mod g) given that
l = jf − kg.

(d) Hence show that fh ≡ 1 (mod g)

i. given that fh+ gi = 1

ii. given that efh+ egi = bh+ di = e

iii. given that b = ef , d = eg, and hb+ id = e.

(e) Hence show that lh ≡ jfh ≡ j (mod g)

i. given that l ≡ jf (mod g)

ii. and fh ≡ 1 (mod g).

(f) Hence show that lhb ≡ jb (mod bg = [b, d])
using procedure I:29.

(g) Hence show that x = a + jb ≡ a + lhb ≡
χb,d(a, c) (mod [b, d]).
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Procedure I:63(1.40)

Objective

Choose two integers a, c and two positive integers
b, d in such a way that a ≡ c (mod (b, d)). The ob-
jective of the following instructions is to show that
either 0 < 0 or χb,d(a, c) = χd,b(c, a).

Implementation

1. Use procedure I:33 on 〈b, d〉 to construct 〈f, g,
h, i, j〉 and show that ib+ jd = f = (b, d).

2. Use procedure I:33 on 〈d, b〉 to construct 〈k,
l,m, n, p〉 and show that pb + nd = k = (d,
b) = (b, d).

3. Use procedure I:36 on 〈b, p, n, d〉 to construct
〈q〉 and show that n = j − qg.

4. Now using procedure I:57, show that χb,d(a, c)

(a) = (a+ ((c− a) div(b, d))ib) mod [b, d]

(b) = (a+ ((c− a) div(b, d))(f − jd)) mod [b, d]

(c) = (a + ((c − a) div(b, d))f + ((a − c) div(b,
d))jd) mod [b, d]

(d) = (a+(c−a)+((a−c) div(b, d))jd) mod [b, d]

(e) = (c+ ((a− c) div(d, b))(n+ qg)d) mod [b, d]

(f) = (c + ((a − c) div(d, b))dn + ((a − c) div(d,
b))q[b, d]) mod [b, d]

(g) = (c+ ((a− c) div(d, b))dn) mod [b, d]

(h) = (c+ ((a− c) div(d, b))dn) mod [d, b]

(i) = χd,b(c, a).

Procedure I:64(1.41)

Objective

Choose three integers x, a, c and two positive in-
tegers b, d such that a ≡ c (mod (b, d)) and x ≡
χb,d(a, c) (mod [b, d]). The objective of the follow-
ing instructions is to show that x ≡ a (mod b).

Implementation

1. Use procedure I:33 on 〈b, d〉 to construct 〈e, f,
g, h, i〉.

2. Show that [b, d] = bg.

3. Hence show that (x mod (bg)) mod b =
(χb,d(a, c) mod (bg)) mod b

(a) given that x mod (bg) = χb,d(a, c) mod (bg)

(b) given that x mod [b, d] = χb,d(a, c) mod [b,
d].

4. Therefore using procedure I:27, show
that x mod b = χb,d(a, c) mod b = (a + ((c −
a) div(b, d))hb) mod b = a mod b.

Procedure I:65(1.42)

Objective

Choose three integers x, a, c and two positive in-
tegers b, d such that a ≡ c (mod (b, d)) and x ≡
χb,d(a, c) (mod [b, d]). The objective of the follow-
ing instructions is to either show that 0 < 0 or to
show that x ≡ a (mod b) and x ≡ c (mod d).

Implementation

1. Use procedure I:64 on 〈x, a, c, b, d〉 to
show that x ≡ a (mod b).

2. Show that x ≡ χb,d(a, c) ≡ χd,b(c, a) (mod [d,
b]) using procedure I:63.

3. Use procedure I:64 on 〈x, c, a, d, b〉 to
show that x ≡ c (mod d).

Procedure I:66(1.43)

Objective

Choose two integers a, c and three positive integers
b, d, e such that a ≡ c (mod (b, d)). The objective
of the following instructions is to show that χb,d(ea,
ec) = eχb,d(a, c).

Implementation

1. Use procedure I:65 on 〈χb,d(a, c), a, c, b, d〉 to
show that:

(a) χb,d(a, c) ≡ a (mod b)

(b) χb,d(a, c) ≡ c (mod d).

2. Hence show that eχb,d(a, c) ≡ ea (mod b) us-
ing procedure I:29.

3. Also show that eχb,d(a, c) ≡ ec (mod d) using
procedure I:29.

4. Also show that ea ≡ ec (mod (b, d)) using us-
ing procedure I:26 given that a ≡ c (mod (b,
d)).
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5. Hence show that eχb,d(a, c) ≡ χb,d(ea, ec)
(mod [b, d]) using procedure I:62.

Procedure I:67(1.44)

Objective

Choose two integers a, c and three positive integers
b, d, e such that a ≡ c (mod (eb, ed)). The objective
of the following instructions is to show that χeb,ed(a,
c) mod [b, d] = χb,d(a, c).

Implementation

1. Use procedure I:65 on 〈χeb,ed(a, c), a, c, eb, ed〉
to show that:

(a) χeb,ed(a, c) ≡ a (mod eb)

(b) χeb,ed(a, c) ≡ c (mod ed).

2. Show that χeb,ed(a, c) ≡ a (mod b) using pro-
cedure I:27.

3. Show that χeb,ed(a, c) ≡ c (mod d) using pro-
cedure I:27.

4. Show that a ≡ c (mod (b, d)) using procedure
I:27 given that a ≡ c (mod e(b, d)).

5. Hence show that χeb,ed(a, c) ≡ χb,d(a, c)
(mod [b, d]) using procedure I:62.

6. Hence show that χeb,ed(a, c) mod [b, d] =
χb,d(a, c).

Procedure I:68(1.46)

Objective

Choose three integers a, c, e and three positive inte-
gers b, d, f such that a ≡ c (mod (b, d)) and χb,d(a,
c) ≡ e (mod ([b, d], f)). The objective of the fol-
lowing instructions is to show that 0 6= 0 if c 6≡ e
(mod (d, f)) or a 6≡ χd,f (c, e) (mod (b, [d, f ])), oth-
erwise χ[b,d],f (χb,d(a, c), e) = χb,[d,f ](a, χd,f (c, e)).

Implementation

1. Show that χ[b,d],f (χb,d(a, c), e) ≡ e (mod f)
using procedure I:65.

2. Show that χ[b,d],f (χb,d(a, c), e) ≡ χb,d(a, c)
(mod [b, d] = gb = hd) using procedure I:65.

3. Show that χ[b,d],f (χb,d(a, c), e) ≡ χb,d(a, c) ≡
a (mod b) using procedure I:27 and procedure
I:65.

4. Show that χ[b,d],f (χb,d(a, c), e) ≡ χb,d(a, c) ≡ c
(mod d) using procedure I:27 and procedure
I:65.

5. Use procedure I:62 on 〈χ[b,d],f (χb,d(a, c), e), c,
e, d, f〉 to show that 0 6= 0 if c 6≡ e (mod (d,
f)), otherwise χ[b,d],f (χb,d(a, c), e) ≡ χd,f (c, e)
(mod [d, f ]).

6. Use procedure I:62 on 〈χ[b,d],f (χb,d(a, c), e),
a, χd,f (c, e), b, [d, f ]〉 to show that 0 6= 0
if a 6≡ χd,f (c, e) (mod (b, [d, f ])), other-
wise χ[b,d],f (χb,d(a, c), e) ≡ χb,[d,f ](a, χd,f (c,
e)) (mod [b, [d, f ]] = [[b, d], f ]).

7. Hence show that χ[b,d],f (χb,d(a, c), e) =
χb,[d,f ](a, χd,f (c, e)).

Declaration I:27(1.15)

The notation χb0,b1,··· ,bn−1(a0, a1, · · · , an−1) will be
used to contextually refer to one of the following
integers:

1. χb0,[b1,b2,··· ,bn−1](a0, χb1,b2,··· ,bn−1
(a1, a2, · · · ,

an−1))

2. χ[b0,b1],[b2,b3,··· ,bn−1](χb0,b1(a0, a1), χb2,b3,··· ,bn−1(a2,
a3, · · · , an−1)

3.
...

4. χ[b0,b1,··· ,bn−2],bn−1
(χb0,b1,··· ,bn−2

(a0, a1, · · · ,
an−2), an−1)

Declaration I:28(1.16)

The notation φ(n) will be used as a shorthand for
the sublist of [0 : n] where each entry x is such that
(x, n) = 1.

Procedure I:69(1.47)

Objective

Choose an integer a and a positive integer b such
that (a, b) = 1. The objective of the following in-
structions is to either show that 0 < 0 or to show
that each element of aφ(b) mod b is in φ(b).

Implementation

1. Show that (a, b) = 1.

2. For i in [0 : |φ(b)|], do the following:
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(a) Show that (φ(b)i, b) = 1 using declaration
I:28.

(b) Use procedure I:44 on 〈a, φ(b)i, b〉 to show
that (aφ(b)i, b) = 1.

(c) Use procedure I:41 on 〈aφ(b)i mod b, aφ(b)i,
b〉 to show that (aφ(b)i mod b, b) = (aφ(b)i,
b) = 1.

(d) Hence show that aφ(b)i mod b is contained
in the list φ(b) given that 0 ≤ aφ(b)i mod
b < b.

3. Hence show that each element of
aφ(b) mod b is in φ(b).

Procedure I:70(1.48)

Objective

Choose an integer a and a positive integer b such
that (a, b) = 1. The objective of the following in-
structions is to either show that 0 6= 0 or to show
that each element of aφ(b) mod b is distinct.

Implementation

1. Use procedure I:33 on 〈a, b〉 to construct 〈r,
t, u, v, w〉 and show that va + wb = r = (a,
b) = 1.

2. Hence show that va ≡ 1 (mod b).

3. Now for i in [0 : |φ(b)|], do the following:

(a) For j in [i+ 1 : |φ(b)|], do the following:

i. If aφ(b)i ≡ aφ(b)j (mod b), then do the
following:

A. Show that φ(b)i ≡ vaφ(b)i ≡ vaφ(b)j ≡
φ(b)j (mod b).

B. Hence show that φ(b)i = φ(b)j .

C. Show that φ(b)i 6= φ(b)j using declara-
tion I:28 given that i 6= j.

D. Hence show that φ(b)i 6= φ(b)i given
that φ(b)i = φ(b)j and φ(b)i 6= φ(b)j.

E. Abort procedure.

ii. Otherwise, do the following:

A. Show that aφ(b)i 6≡ aφ(b)j (mod b).

4. Therefore show that aφ(b) mod b is com-
posed of distinct elements.

Procedure I:71(1.49)

Objective

Choose an integer a and a positive integer b such
that (a, b) = 1. The objective of the following in-
structions is to either show that 0 < 0 or to show
that aφ(b) mod b is a rearrangement of φ(b).

Implementation

1. Use procedure I:69 on 〈a, b〉 to show that each
element of aφ(b) mod b is in φ(b).

2. Show that |aφ(b) mod b| = |φ(b)|.

3. Use procedure I:70 on 〈a, b〉 to show that
aφ(b) mod b is composed of distinct elements.

4. Hence show that aφ(b) mod b is a rear-
rangement of φ(b).

Procedure I:72(1.50)

Objective

Choose an integer a and a positive integer b such
that (a, b) = 1. The objective of the following in-
structions is to show that either 0 < 0 or a|φ(b)| ≡ 1
(mod b).

Implementation

1. For i in [0 : |φ(b)|], do the following:

(a) Use procedure I:33 on 〈φ(b)i, b〉 to construct
〈ri, ti, ui, vi, wi〉 and show that viφ(b)i +
wib = ri = (φ(b)i, b).

(b) Show that viφ(b)i + wib = (φ(b)i, b) = 1 us-
ing declaration I:28.

(c) Hence show that viφ(b)i ≡ 1 (mod b).

2. Hence using procedure I:71, show that∏[0:|φ(b)|]
i φ(b)i

(a) ≡
∏[0:|φ(b)|]
i aφ(b)i

(b) ≡ a|φ(b)|∏[0:|φ(b)|]
i φ(b)i (mod b).

3. Hence show that 1

(a) ≡
∏[0:|φ(b)|]
i (viφ(b)i)

(b) =
∏[0:|φ(b)|]
i vi

∏[0:|φ(b)|]
i φ(b)i

(c) ≡ a|φ(b)|∏[0:|φ(b)|]
i φ(b)i

∏[0:|φ(b)|]
i vi

(d) ≡ a|φ(b)| (mod b).
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Declaration I:29(1.17)

The notation a × b as a shorthand for the |a| × |b|
matrix such that for i in [0 : |a|], for j in [0 : |b|],
(a× b)i,j = 〈ai, bj〉.

Procedure I:73(1.52)

Objective

Choose two positive integers a, b such that (a, b) = 1.
The objective of the following instructions is to show
that each entry of χa,b([0 : a]× [0 : b]) is in [0 : ab].

Implementation

1. Let h = χa,b([0 : a]× [0 : b]).

2. Show that 0 ≤ hi,j < [a, b] = [a, b](a, b) = ab
for i in [0 : a], for j in [0 : b].

3. Hence show that each entry of h is in
[0 : ab].

Procedure I:74(1.53)

Objective

Choose two positive integers a, b such that (a, b) = 1.
The objective of the following instructions is to ei-
ther show that 0 < 0 or to show that each entry of
χa,b([0 : a]× [0 : b]) is distinct.

Implementation

1. Let h = χa,b([0 : a]× [0 : b]).

2. For each distinct unordered pair of index pairs
〈i, j〉 and 〈k, l〉 of h, do the following:

(a) If hi,j = hk,l, then do the following:

i. Show that χa,b(i, j) = χa,b([0 : a]i, [0 :
b]j) = hi,j = hk,l = χa,b([0 : a]k, [0 : b]l) =
χa,b(k, l).

ii. Show that i ≡ χa,b(i, j) = χa,b(k, l) ≡ k
(mod a) using procedure I:65 given that
χa,b(i, j) = χa,b(k, l).

iii. Hence show that i = k.

iv. Show that j ≡ χa,b(i, j) = χa,b(k, l) ≡ l
(mod b) using procedure I:65 given that
χa,b(i, j) = χa,b(k, l).

v. Hence show that j = l.

vi. Hence show that 〈i, j〉 = 〈k, l〉.

vii. Hence show that 〈i, j〉 6= 〈i, j〉 given
that 〈i, j〉 and 〈k, l〉 are distinct.

viii. Abort procedure.

(b) Otherwise do the following:

i. Show that hi,j 6= hk,l.

3. Hence show that each entry of h is dis-
tinct.

Procedure I:75(1.54)

Objective

Choose two positive integers a, b such that (a, b) = 1.
The objective of the following instructions is to show
that either 0 < 0 or χa,b([0 : a] × [0 : b]) is a rear-
rangement [0 : ab].

Implementation

1. Let h = χa,b([0 : a]× [0 : b]).

2. Use procedure I:73 on 〈a, b〉 to show that each
element of h is in [0 : ab].

3. Also show that h has the same number of en-
tries as [0 : ab].

4. Use procedure I:74 on 〈a, b〉 to show that h is
composed of distinct elements.

5. Hence show that h is a rearrangement of
[0 : ab].

Procedure I:76(1.55)

Objective

Choose two positive integers a, b such that (a, b) = 1.
The objective of the following instructions is to ei-
ther show that 0 < 0 or to show that each entry of
χa,b(φ(a)× φ(b)) is in φ(ab).

Implementation

1. Let h = χa,b(φ(a)× φ(b)).

2. Now, for each index pair 〈i, j〉 of h, do the
following:

(a) Show that 0 ≤ hi,j < [a, b] = [a, b](a,
b) = ab.

(b) Show that hi,j = χa,b(φ(a)i, φ(b)j) ≡ φ(a)i
(mod a).
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(c) Hence use procedure I:41 on 〈hi,j , φ(a)i, a〉
to show that (a, hi,j) = (hi,j , a) = (φ(a)i,
a) = 1.

(d) Also show that hi,j = χa,b(φ(a)i, φ(b)j) ≡
φ(b)j (mod b).

(e) Hence use procedure I:41 on 〈hi,j , φ(b)j , b〉
to show that (b, hi,j) = (hi,j , b) = (φ(b)j ,
b) = 1.

(f) Hence show that (hi,j , ab) = (ab, hi,j) = 1.

(g) Hence show that hi,j is in φ(ab).

3. Hence show that each entry of χa,b(φ(a)×
φ(b)) is in φ(ab).

Procedure I:77(1.56)

Objective

Choose two positive integers a, b such that (a, b) = 1.
The objective of the following instructions is to ei-
ther show that 0 < 0 or to show that each entry of
φ(ab) is in χa,b(φ(a)× φ(b)).

Implementation

1. For i in [0 : |φ(ab)|], do the following:

(a) Show that (φ(ab)i, ab) = 1.

(b) Show that φ(ab)i ≡ φ(ab)i mod a (mod a).

(c) Hence show that (φ(ab)i mod a, a) =
(φ(ab)i, a) = 1 using procedure I:41.

(d) Hence show that φ(ab)i mod a is amongst
φ(a) given that 0 ≤ φ(ab)i mod a < a.

(e) Show that φ(ab)i ≡ φ(ab)i mod b (mod b).

(f) Hence show that (φ(ab)i mod b, b) =
(φ(ab)i, b) = 1 using procedure I:41.

(g) Hence show that φ(ab)i mod b is amongst
φ(b) given that 0 ≤ φ(ab)i mod b < b.

(h) Hence show that 〈φ(ab)i mod a, φ(ab)i mod
b〉 is amongst φ(a)× φ(b).

(i) Show that φ(ab)i ≡ χa,b(φ(ab)i mod
a, φ(ab)i mod b) (mod [a, b] = [a, b](a,
b) = ab) using procedure I:62 given
that φ(ab)i ≡ φ(ab)i mod a (mod a) and
φ(ab)i ≡ φ(ab)i mod b (mod b).

(j) Hence show that φ(ab)i = χa,b(φ(ab)i mod
a, φ(ab)i mod b).

(k) Hence show that φ(ab)i is amongst
χa,b(φ(a) × φ(b)) given that 〈φ(ab)i mod a,
φ(ab)i mod b〉 is amongst φ(a) × φ(b) and
φ(ab)i = χa,b(φ(ab)i mod a, φ(ab)i mod b).

2. Hence show that each entry of φ(ab) is
in χa,b(φ(a)× φ(b)).

Procedure I:78(1.57)

Objective

Choose two positive integers a, b such that (a, b) = 1.
The objective of the following instructions is to ei-
ther show that 0 < 0 or to show that φ(ab) is a re-
arrangement of χa,b(φ(a)×φ(b)) and that |φ(ab)| =
|φ(a)||φ(b)|.

Implementation

1. Use procedure I:75 on 〈a, b〉 to show that
χa,b([0 : a] × [0 : b]) is a rearrangement of
[0 : ab].

2. Show that χa,b(φ(a)× φ(b)) is a submatrix of
χa,b([0 : a]× [0 : b]).

3. Hence show that the entries of χa,b(φ(a)×φ(b))
are distinct.

4. Use procedure I:76 on 〈a, b〉 to show that the
entries of χa,b(φ(a)× φ(b)) are in φ(ab).

5. Show that the entries of φ(ab) are distinct.

6. Use procedure I:77 on 〈a, b〉 to show that the
entries of φ(ab) are in χa,b(φ(a)× φ(b)).

7. Hence show that φ(ab) is a rearrange-
ment of χa,b(φ(a)× φ(b)).

8. Hence show that |φ(ab)| = |χa,b(φ(a) ×
φ(b))| = |φ(a)× φ(b)| = |φ(a)||φ(b)|.

Declaration I:30(1.18)

The notation [P ], where P is a condition, will be
used as a shorthand for 1 if P , otherwise it will stand
for 0.

Declaration I:31(1.32)

The notation a+, where a is a list, will be used as a
shorthand for 0 if a is empty, otherwise it will be a
shorthand for the sum of the entries of a.
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Declaration I:32(1.19)

The notation
∑R
r f(r), where R is a list and f [r]

is a function of r, will be used as a shorthand for
f(R)+.

Procedure I:79(1.58)

Objective

Choose a positive integer a and a prime b. The ob-
jective of the following instructions is to show that
either 0 < 0 or |φ(ba)| = ba − ba−1.

Implementation

1. Show that
∑[0:ba]
r [(r, ba) = 1] ≤

∑[0:ba]
r [(r,

b) = 1] using procedure I:45.

2. Show that
∑[0:ba]
r [(r, b) = 1] ≤

∑[0:ba]
r [(r,

ba) = 1] using procedure I:44.

3. Hence show that
∑[0:ba]
r [(r, ba) = 1] =∑[0:ba]

r [(r, b) = 1].

4. Show that
∑[0:ba]
r [(r, b) = 1] ≤

∑[0:ba]
r [r mod

b 6= 0] using procedure I:37.

5. Show that
∑[0:ba]
r [r mod b 6= 0] ≤

∑[0:ba]
r [(r,

b) = 1] using procedure I:46.

6. Hence show that
∑[0:ba]
r [(r, b) = 1] =∑[0:ba]

r [r mod b 6= 0].

7. Hence show that |φ(ba)| =
∑[0:ba]
r [(r, ba) =

1] =
∑[0:ba]
r [(r, b) = 1] =

∑[0:ba]
r [r mod b 6=

0] =
∑[0:ba]
r (1− [r mod b = 0]) = ba − ba−1.

Procedure I:80(1.59)

Objective

Choose a list of primes a. Let b be the list of distinct
primes in a. Let c be a list such that ci is the mul-
tiplicity of bi in a for i = 1 to i = |b|. The objective
of the following instructions is to show that either

0 < 0 or |φ(a∗)| =
∏[0:|b|]
i (bi

ci − bici−1).

Implementation

1. If a = 〈〉, then do the following:

(a) Show that |b| = |a| = 0.

(b) Hence show that φ(a∗) = φ(1) = 1 =∏[0:|b|]
i (bi

ci − bici−1).

2. Otherwise, do the following:

(a) Show that a∗ =
∏[0:|b|]
i bi

ci .

(b) Show that |a| > 0.

(c) Hence show that |c| = |b| > 0.

(d) Hence show that (b0
c0 ,
∏[1:|b|]
i bi

ci) = 1 using
procedure I:54.

(e) Let d be the list a with all instances of a0

removed.

(f) Verify that |d| < |a|.

(g) Now use procedure I:80 on 〈d〉 to show

that φ(d∗) = φ(
∏[1:|b|]
i bi

ci) =
∏[1:|b|]
i (bi

ci −
bi
ci−1).

(h) Hence show that |φ(a∗)| =

|φ(
∏[0:|b|]
i bi

ci)| = |φ(b0
c0
∏[1:|b|]
i bi

ci)| =

|φ(b0
c0)||φ(

∏[1:|b|]
i bi

ci)| = (b0
c0 −

b0
c0−1)|φ(

∏[1:|b|]
i bi

ci)| = (b0
c0 −

b0
c0−1)

∏[1:|b|]
i (bi

ci − bici−1) =
∏[0:|b|]
i (bi

ci −
bi
ci−1) using procedure I:78 and proce-

dure I:79 given that (b0
c0 ,
∏[1:|b|]
i bi

ci) =

1 and φ(
∏[1:|b|]
i bi

ci) =
∏[1:|b|]
i (bi

ci−bici−1).
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Chapter 4

Permutations and Combinations

Declaration I:33(1.20)

The notation ab will be used as a shorthand for∏[0:b]
i (a− i).

Declaration I:34(1.33)

The notation ab will be used as a shorthand for∏[0:b]
i (a+ i).

Procedure I:81(1.60)

Objective

Choose a list of distinct elements a and a non-
negative integer b such that b ≤ |a|. Let c be a
list of length-b permutations of a. The objective of
the following instructions is to show that |c| = |a|b.

Implementation

1. If |b| > 0, then do the following:

(a) For each entry d in a, do the following:

i. Let e be the list formed by removing d
from a.

ii. Show that the entries of e are distinct
given that the entries of a are distinct.

iii. Show that |e| = |a| − 1.

iv. Now use procedure I:81 on 〈e, b − 1〉 to
show that the number of length-b− 1 per-
mutations of e is |e|b−1.

v. Hence show that the number of length-
b permutations of a beginning with d is
|e|b−1 = (|a| − 1)b−1.

(b) Hence show that the number of length-b per-
mutations of a beginning with any entry of
a is |a|(|a| − 1)b−1 = |a|b.

(c) Hence show that the number of length-b per-
mutations of a are |a|b.

(d) Hence show that |c| = |a|b.

2. Otherwise do the following:

(a) Show that b = 0.

(b) Show that the number of length-0 permuta-
tions of a is 1.

(c) Therefore show that |c| = 1 = |a|0 = |a|b.

Declaration I:35(1.21)

The notation
(
n
r

)
will be used as a shorthand for

nr div(r!).

Procedure I:82(1.61)

Objective

Choose a list of distinct elements n and a non-
negative integer r such that r ≤ |n|. Let b be the
largest list of length-r sublists of n such that no
two of them are permutations of each other. The
objective of the following instructions is to either
show that b contains at least two permutations of
the same list, construct a list larger than b that is
also a list of length-r sublists of n such that no two
of them are permutations of each other, or to show
that |b| =

(|n|
r

)
and that |n|r mod r! = 0.
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Implementation

1. Let a and f be a list of all the permutations
of n.

2. Show that |a| = |n||n| using procedure I:81.

3. For each list c in b, do the following:

(a) Show that the number of permutations of c
is r! using procedure I:81.

(b) Let d be the list obtained by removing the
elements of c from n.

(c) Show that the number of permutations of d
is (n− r)! using procedure I:81.

(d) Let e be the list of permutations of n begin-
ning with a permutation of c.

(e) Show that |e| = r!(|n| − r)! given that there
are r! possible choices for the first part of e
and (|n|− r)! possible choices for the second
part of e.

(f) If e is not a sublist of a, then do the follow-
ing:

i. Let g be a list in e that is not in a.

ii. Show that e is a sublist of f .

iii. Therefore show that g was in a but then
was removed.

iv. Therefore show that the variable c was for-
merly equal to a permutation of the cur-
rent c.

v. Therefore show that b contains at
least two permutations of c.

vi. Abort procedure.

(g) Otherwise, do the following:

i. Show that e is a sublist of a.

ii. Remove the lists in e from a.

4. If a 6= 〈〉, then do the following:

(a) Let g be a list in a.

(b) Let h be the sublist of g corresponding to its
first r elements.

(c) Therefore show that the permutations of
n beginning with a permutation of h were
never removed from a.

(d) Therefore show that the variable c was never
equal to a permutation of h.

(e) Therefore show that no permutation of h is
in b.

(f) Therefore show that b_〈h〉 is larger
than b and is also a list of length-r sub-
lists of n such that no two of them are
permutations of each other.

(g) Abort procedure.

5. Otherwise do the following:

(a) Show that |n|! mod (r!(|n| − r)!) = 0.

(b) Therefore show that nr mod r!

i. = (|n|! div(|n| − r)!) mod r!

ii. = ((|n|! mod (r!(|n| − r)!)r!(|n| −
r)!) div(|n| − r)!) mod r!

iii. = ((|n|! div(r!(|n| − r)!))r!) mod r!

iv. = 0.

(c) Also show that (3) iterated |n|! div(r!(|n| −
r)!) times.

(d) Therefore using procedure I:32, show
that |b|

i. = |n|! div(r!(|n| − r)!)

ii. = (|n|! div(|n| − r)!) div(r!)

iii. = nr div(r!)

iv. =
(
n
r

)
.

Procedure I:83(1.62)

Objective

Choose two positive integers a, b. The objective
of the following instructions is to show that

(
a
b

)
=(

a−1
b−1

)
+
(
a−1
b

)
.

Implementation

1. Using procedure I:29 and procedure I:30, show
that

(
a−1
b−1

)
+
(
a−1
b

)
(a) = (a− 1)b−1 div(b− 1)! + (a− 1)b div b!

(b) = ((a− 1)b−1b) div b! + (a− 1)b div b!

(c) = ((a− 1)b−1b+ (a− 1)b) div b!

(d) = ((a− 1)b−1b+ (a− 1)b−1(a− b)) div b!
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(e) = ((a− 1)b−1a) div b!

(f) = ab div b!

(g) =
(
a
b

)
.

Procedure I:84(1.63)

Objective

Choose an integer x and a non-negative integer a.
The objective of the following instructions is to show

that the (1 + x)a =
∑[0:a+1]
r

(
a
r

)
xr.

Implementation

1. If a = 0, then do the following:

(a) Show that (1 + x)a = (1 + x)0 = 1 =∑[0:1]
r

(
0
r

)
xr =

∑[0:a+1]
r

(
a
r

)
xr.

2. Otherwise, do the following:

(a) Show that a > 0.

(b) Therefore show that a− 1 ≥ 0.

(c) Use procedure I:84 on 〈x, a−1〉 to show that

(1 + x)a−1 =
∑[0:a]
r

(
a−1
r

)
xr.

(d) Therefore using procedure I:83, show that
(1 + x)a

i. = (1 + x)(1 + x)a−1

ii. = (1 + x)
∑[0:a]
r

(
a−1
r

)
xr

iii. =
∑[0:a]
r

(
a−1
r

)
xr +

∑[0:a]
r

(
a−1
r

)
xr+1

iv. =
∑[0:a+1]
r

(
a−1
r

)
xr +

∑[1:a+1]
r

(
a−1
r−1

)
xr

v. = 1 +
∑[1:a+1]
r (

(
a−1
r

)
+
(
a−1
r−1

)
)xr

vi. = 1 +
∑[1:a+1]
r

(
a
r

)
xr

vii. =
∑[0:a+1]
r

(
a
r

)
xr.
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Part II

Rational Arithmetic
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Chapter 5

Rational Arithmetic

Declaration II:0(2.12)

The phrase ”rational number” will be used as a
shorthand for an ordered pair comprising an inte-
ger followed by a non-zero natural number.

Declaration II:1(2.13)

The phrase ”the numerator of a” and the notation
nu(a), where a is a rational number, will be used as
a shorthand for the first entry of a.

Declaration II:2(2.14)

The phrase ”the denominator of a” and the notation
de(a), where a is a rational number, will be used as
a shorthand for the second entry of a.

Declaration II:3(2.15)

The phrase ”a = b”, where a, b are rational num-
bers, will be used as a shorthand for ”nu(a) de(b) =
de(a) nu(b)”.

Procedure II:0(2.27)

Objective

Choose a rational number a. The objective of the
following instructions is to show that a = a.

Implementation

1. Show that a = a using declaration II:3
given that nu(a) de(a) = de(a) nu(a).

Procedure II:1(2.28)

Objective

Choose two rational numbers a, b such that a = b.
The objective of the following instructions is to show
that b = a.

Implementation

1. Show that nu(a) de(b) = de(a) nu(b) using dec-
laration II:3 given that a = b.

2. Hence show that b = a using declaration
II:3 given that nu(b) de(a) = de(b) nu(a).

Procedure II:2(2.29)

Objective

Choose three rational numbers a, b, c such that a = b
and b = c. The objective of the following instruc-
tions is to show that a = c.

Implementation

1. Show that nu(a) de(b) = de(a) nu(b) using dec-
laration II:3 given that a = b.

2. Show that nu(b) de(c) = de(b) nu(c) using dec-
laration II:3 given that b = c.

3. If nu(b) 6= 0, then do the following:

(a) Show that nu(a) de(b) nu(b) de(c) =
de(a) nu(b) de(b) nu(c).

(b) Hence show that nu(a) de(c) = de(a) nu(c).

4. Otherwise do the following:
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(a) Show that nu(b) = 0.

(b) Show that de(b) 6= 0 using declaration II:0.

(c) Show that nu(a) de(b) = de(a) nu(b) =
0 de(a) = 0 given that a = b.

(d) Hence show that nu(a) = 0.

(e) Show that 0 = 0 de(c) = nu(b) de(c) =
de(b) nu(c).

(f) Hence show that nu(c) = 0.

(g) Hence show that nu(a) de(c) = 0 de(c) =
de(a)0 = de(a) nu(c).

5. Hence show that a = c.

Declaration II:4(2.16)

The notation a + b, where a, b are rational num-
bers, will be used as a shorthand for the pair
〈nu(a) de(b) + de(a) nu(b),de(a) de(b)〉.

Procedure II:3(2.30)

Objective

Choose two rational numbers a, b, c, d such that a =
c and b = d. The objective of the following instruc-
tions is to show that a+ b = c+ d.

Implementation

1. Show that nu(a) de(c) = de(a) nu(c) using dec-
laration II:3 given that a = c.

2. Show that nu(b) de(d) = de(b) nu(d) using dec-
laration II:3 given that b = d.

3. Hence using declaration II:4, show that a+ b

(a) = 〈nu(a),de(a)〉+ 〈nu(b),de(b)〉

(b) = 〈nu(a) de(b) + de(a) nu(b),de(a) de(b)〉

(c) = 〈de(c) de(d)(nu(a) de(b) + de(a) nu(b)),
de(c) de(d)(de(a) de(b))〉

(d) = 〈nu(a) de(c) de(b) de(d)+de(a) de(c) nu(b) de(d),
de(c) de(d) de(a) de(b)〉

(e) = 〈de(a) nu(c) de(b) de(d)+de(a) de(c) de(b) nu(d),
de(c) de(d) de(a) de(b)〉

(f) = 〈de(a) de(b)(nu(c) de(d) + de(c) nu(d)),
de(a) de(b)(de(c) de(d))〉

(g) = 〈nu(c) de(d) + de(c) nu(d),de(c) de(d)〉

(h) = 〈nu(c),de(c)〉+ 〈nu(d),de(d)〉

(i) = c+ d.

Procedure II:4(2.31)

Objective

Choose three rational numbers a, b, c. The objec-
tive of the following instructions is to show that
(a+ b) + c = a+ (b+ c).

Implementation

1. Using declaration II:4, show that (a+ b) + c

(a) = 〈nu(a) de(b) + de(a) nu(b),de(a) de(b)〉 +
〈nu(c),de(c)〉

(b) = 〈(nu(a) de(b) + de(a) nu(b)) de(c) +
(de(a) de(b)) nu(c), (de(a) de(b)) de(c)〉

(c) = 〈nu(a)(de(b) de(c)) + de(a)(nu(b) de(c) +
de(b) nu(c)),de(a)(de(b) de(c))〉

(d) = 〈nu(a),de(a)〉+ 〈nu(b) de(c) + de(b) nu(c),
de(b) de(c)〉

(e) = a+ (b+ c).

Procedure II:5(2.32)

Objective

Choose two rational numbers a, b. The objective of
the following instructions is to show that a + b =
b+ a.

Implementation

1. Using declaration II:4, show that a+ b

(a) = 〈nu(a) de(b) + de(a) nu(b),de(a) de(b)〉

(b) = 〈nu(b) de(a) + de(b) nu(a),de(b) nu(a)〉

(c) = b+ a.

Declaration II:5(2.17)

The notation a, where a is an integer, will contex-
tually be used as a shorthand for the pair 〈a, 1〉.

Procedure II:6(2.33)

Objective

Choose a rational number a. The objective of the
following instructions is to show that 0 + a = a.
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Implementation

1. Using declaration II:4 and declaration II:5,
show that 0 + a

(a) = 〈0, 1〉+ 〈nu(a),de(a)〉

(b) = 〈0 de(a) + 1 nu(a), 1 de(a)〉

(c) = 〈nu(a),de(a)〉

(d) = a.

Declaration II:6(2.18)

The notation −a, where a is a rational number,
will be used as a shorthand for the pair 〈− nu(a),
de(a)〉.

Procedure II:7(2.34)

Objective

Choose two rational numbers a, b such that a = b.
The objective of the following instructions is to show
that −a = −b.

Implementation

1. Show that nu(a) de(b) = de(a) nu(b) using dec-
laration II:3 given that a = b.

2. Hence using declaration II:6, show that −a

(a) = 〈−nu(a),de(a)〉

(b) = 〈−nu(a) de(b),de(a) de(b)〉

(c) = 〈−de(a) nu(b),de(a) de(b)〉

(d) = 〈−nu(b),de(b)〉

(e) = −b.

Procedure II:8(2.35)

Objective

Choose a rational number a. The objective of the
following instructions is to show that −a+ a = 0.

Implementation

1. Using declaration II:4 and declaration II:6,
show that −a+ a

(a) = (−a) + a

(b) = 〈−nu(a),de(a)〉+ 〈nu(a),de(a)〉

(c) = 〈−nu(a) de(a) + de(a) nu(a),de(a)2〉

(d) = 〈0,de(a)2〉

(e) = 〈0, 1〉

(f) = 0.

Declaration II:7(2.19)

The notation ab, where a, b are rational numbers,
will be used as a shorthand for the pair 〈nu(a) nu(b),
de(a) de(b)〉.

Procedure II:9(2.36)

Objective

Choose two rational numbers a, b, c, d such that a =
c and b = d. The objective of the following instruc-
tions is to show that ab = cd.

Implementation

1. Show that nu(a) de(c) = de(a) nu(c) using dec-
laration II:3 given that a = c.

2. Show that nu(b) de(d) = de(b) nu(d) using dec-
laration II:3 given that b = d.

3. Hence using declaration II:7, show that ab

(a) = 〈nu(a),de(a)〉〈nu(b),de(b)〉

(b) = 〈nu(a) nu(b),de(a) de(b)〉

(c) = 〈(de(c) de(d)) nu(a) nu(b), (de(c) de(d)) de(a) de(b)〉

(d) = 〈(nu(a) de(c))(nu(b) de(d)),de(c) de(d) de(a) de(b)〉

(e) = 〈(de(a) nu(c))(de(b) nu(d)),de(c) de(d) de(a) de(b)〉

(f) = 〈(de(a) de(b)) nu(c) nu(d), (de(a) de(b)) de(c) de(d)〉

(g) = 〈nu(c) nu(d),de(c) de(d)〉

(h) = 〈nu(c),de(c)〉〈nu(d),de(d)〉

(i) = cd.

Procedure II:10(2.37)

Objective

Choose three rational numbers a, b, c. The objec-
tive of the following instructions is to show that
(ab)c = a(bc).
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Implementation

1. Using declaration II:7, show that (ab)c

(a) = 〈nu(a) nu(b),de(a) de(b)〉〈nu(c),de(c)〉

(b) = 〈nu(a) nu(b) nu(c),de(a) de(b) de(c)〉

(c) = 〈nu(a),de(a)〉〈nu(b) nu(c),de(b) de(c)〉

(d) = a(bc).

Procedure II:11(2.38)

Objective

Choose two rational numbers a, b. The objective of
the following instructions is to show that ab = ba.

Implementation

1. Using declaration II:7, show that ab

(a) = 〈nu(a) nu(b),de(a) de(b)〉

(b) = 〈nu(b) nu(a),de(b) de(a)〉

(c) = ba.

Procedure II:12(2.39)

Objective

Choose a rational number a. The objective of the
following instructions is to show that 1a = a.

Implementation

1. Using declaration II:7, show that 1a

(a) = 〈1, 1〉〈nu(a),de(a)〉

(b) = 〈1 nu(a), 1 de(a)〉

(c) = 〈nu(a),de(a)〉

(d) = a.

Declaration II:8(2.20)

The notation 1
a , where a is a rational number, will

be used as a shorthand for the pair 〈de(a),nu(a)〉 if
nu(a) > 0 and 〈− de(a),−nu(a)〉 if nu(a) < 0.

Procedure II:13(2.40)

Objective

Choose two rational numbers a, b such that a = b
and a 6= 0. The objective of the following instruc-
tions is to show that 1

a = 1
b .

Implementation

1. Show that nu(a) = nu(a) de(0) 6=
de(a) nu(0) = 0 using declaration II:3 and
declaration II:5 given that a 6= 0.

2. Show that nu(a) de(b) = de(a) nu(b) using dec-
laration II:3 given that a = b.

3. Hence show that de(a) nu(b) = nu(a) de(b) 6= 0
using declaration II:0 given that nu(a) 6= 0.

4. Hence show that nu(b) 6= 0.

5. If nu(a) nu(b) > 0, then do the following:

(a) Using declaration II:8, show that 1
a

i. = 〈de(a) nu(b),nu(a) nu(b)〉

ii. = 〈nu(a) de(b),nu(a) nu(b)〉

iii. = 1
b .

6. Otherwise do the following:

(a) Show that nu(a) nu(b) < 0.

(b) Hence using declaration II:8, show that 1
a

i. = 〈− de(a) nu(b),−nu(a) nu(b)〉

ii. = 〈− nu(a) de(b),−nu(a) nu(b)〉

iii. = 1
b .

Procedure II:14(2.41)

Objective

Choose a rational number a such that a 6= 0. The
objective of the following instructions is to show that
1
aa = 1.

Implementation

1. Show that nu(a) = nu(a) de(0) 6=
de(a) nu(0) = 0 using declaration II:3 and
declaration II:5, given that a 6= 0.

2. If nu(a) > 0, then do the following:

(a) Using declaration II:8, show that 1
aa
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i. = 〈de(a),nu(a)〉〈nu(a),de(a)〉

ii. = 〈de(a) nu(a),nu(a) de(a)〉

iii. = 〈1, 1〉

iv. = 1.

3. Otherwise do the following:

(a) Show that nu(a) < 0.

(b) Hence using declaration II:8, show that 1
aa

i. = 〈−de(a),−nu(a)〉〈nu(a),de(a)〉

ii. = 〈−de(a) nu(a),−nu(a) de(a)〉

iii. = 〈1, 1〉

iv. = 1.

Procedure II:15(2.42)

Objective

Choose three rational numbers a, b, c. The objec-
tive of the following instructions is to show that
a(b+ c) = ab+ ac.

Implementation

1. Using declaration II:4 and declaration II:7,
show that a(b+ c)

(a) = 〈nu(a),de(a)〉〈nu(b) de(c) + de(b) nu(c),
de(b) de(c)〉

(b) = 〈nu(a)(nu(b) de(c) + de(b) nu(c)),
de(a)(de(b) de(c))〉

(c) = 〈nu(a) nu(b) de(c) + nu(a) de(b) nu(c),
de(a) de(b) de(c)〉

(d) = 〈de(a)(nu(a) nu(b) de(c)+nu(a) de(b) nu(c)),
de(a)(de(a) de(b) de(c))〉

(e) = 〈(nu(a) nu(b))(de(a) de(c))+(de(a) de(b))(nu(a) nu(c)),
(de(a) de(b))(de(a) de(c))〉

(f) = 〈nu(a) nu(b),de(a) de(b)〉 + 〈nu(a) nu(c),
de(a) de(c)〉

(g) = ab+ ac.

Procedure II:16(2.09)

Objective

Choose an integer a. The objective of the follow-
ing instructions is to show that (−1)2a = 1 and
(−1)2a+1 = −1.

Implementation

Implementation is analogous to that of procedure
I:14.

Declaration II:9(2.22)

The phrases ”a < b” and ”b > a”, where a, b are
rational numbers, will be used as a shorthand for
”nu(a) de(b) < de(a) nu(b)”.

Procedure II:17(2.43)

Objective

Choose four rational numbers a, b, c, d such that
a < b, a = c and b = d. The objective of the
following instructions is to show that c < d.

Implementation

1. Show that nu(a) de(c) = de(a) nu(c) using dec-
laration II:3 given that a = c.

2. Show that nu(b) de(d) = de(b) nu(d) using dec-
laration II:3 given that b = d.

3. Show that nu(a) de(b) < de(a) nu(b) using dec-
laration II:9 given that a < b.

4. Hence show that nu(c) de(d) de(a) de(b)

(a) = nu(a) de(c) de(d) de(b)

(b) < de(a) nu(b) de(c) de(d)

(c) = de(b) nu(d) de(a) de(c).

5. Hence show that nu(c) de(d) < de(c) nu(d).

6. Hence show that c < d using declaration
II:9.

Procedure II:18(2.44)

Objective

Choose three rational numbers a, b, c such that a <
b. The objective of the following instructions is to
show that a+ c < b+ c.
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Implementation

1. Show that nu(a) de(b) < de(a) nu(b) using dec-
laration II:9 given that a < b.

2. Show that 0 < de(c) using declaration II:0.

3. Hence show that nu(a+ c) de(b+ c)

(a) = (nu(a) de(c) + de(a) nu(c)) de(b) de(c)

(b) = nu(a) de(c) de(b) de(c)+de(a) nu(c) de(b) de(c)

(c) < de(a) de(c) nu(b) de(c)+de(a) nu(c) de(b) de(c)

(d) = (nu(b) de(c) + nu(c) de(b)) de(a) de(c)

(e) = nu(b+ c) de(a+ c).

4. Hence show that a+ c < b+ c.

Procedure II:19(2.45)

Objective

Choose two rational numbers a, b. The objective
of the following instructions is to show that either
a < b, a = b and b < a.

Implementation

1. Using procedure I:17, show that either

(a) nu(a) de(b) < de(a) nu(b)

(b) nu(a) de(b) = de(a) nu(b)

(c) nu(a) de(b) > de(a) nu(b)

2. Hence show that either

(a) a < b using declaration II:9 given that
nu(a) de(b) < de(a) nu(b).

(b) a = b using declaration II:3 given that
nu(a) de(b) = de(a) nu(b).

(c) b > a using declaration II:9 given that
nu(b) de(a) > de(b) nu(a).

Procedure II:20(2.49)

Objective

Choose two rational numbers a, b such that 0 < a
and 0 < b. The objective of the following instruc-
tions is to show that 0 < a+ b.

Implementation

1. Show that 0 = nu(0) de(a) < de(0) nu(a) =
nu(a) using declaration II:9 given that 0 < a.

2. Show that 0 < de(a) using declaration II:0.

3. Show that 0 = nu(0) de(b) < de(0) nu(b) =
nu(b) using declaration II:9 given that 0 < b.

4. Show that 0 < de(b) using declaration II:0.

5. Hence show that nu(0) de(a + b) = 0 <
nu(a) de(b) + de(a) nu(b) = de(0) nu(a+ b).

6. Hence show that 0 < a + b using dec-
laration II:9 given that nu(0) de(a + b) <
de(0) nu(a+ b).

Procedure II:21(2.50)

Objective

Choose two rational numbers a, b such that 0 < a
and 0 < b. The objective of the following instruc-
tions is to show that 0 < ab.

Implementation

1. Show that 0 = nu(0) de(a) < de(0) nu(a) =
nu(a) using declaration II:9 given that 0 < a.

2. Show that 0 = nu(0) de(b) < de(0) nu(b) =
nu(b) using declaration II:9 given that 0 < b.

3. Hence show that nu(0) de(ab) = 0 <
nu(a) nu(b) = de(0) nu(ab).

4. Hence show that 0 < ab using declaration
II:9 given that nu(0) de(ab) < de(0) nu(ab).

Procedure II:22(2.81)

Objective

Choose two rational numbers a, b. The objective of
the following instructions is to show that ‖ab‖ =
‖a‖‖b‖.

Implementation

Implementation is analogous to that of procedure
I:20.
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Procedure II:23(2.82)

Objective

Choose two rational numbers a, b. The objective of
the following instructions is to show that ‖a+ b‖ ≤
‖a‖+ ‖b‖.

Implementation

Implementation is analogous to that of procedure
I:21.

Procedure II:24(2.83)

Objective

Choose two rational numbers a, b. The objective of
the following instructions is to show that ‖a‖−‖b‖ ≤
‖a− b‖.

Implementation

Implementation is analogous to that of procedure
I:22.

Procedure II:25(2.84)

Objective

Choose a rational number a. The objective of the
following instructions is to show that a = sgn(a)‖a‖.

Implementation

Implementation is analogous to that of procedure
I:23.

Procedure II:26(thu3001201131)

Objective

Choose two rational numbers x, y such that xy ≤ 0.
The objective of the following instructions is to show
that ‖x‖ ≤ ‖y − x‖ and ‖y‖ ≤ ‖y − x‖.

Implementation

1. Show that − 1
2 (y − x)2 + 1

2y
2 + 1

2x
2 = xy ≤ 0.

2. Hence show that 1
2 (y2 + x2) ≤ 1

2 (y − x)2.

3. Hence show that ‖y‖ ≤ ‖y−x‖ given that
y2 ≤ y2 + x2 ≤ (y − x)2.

4. Also show that ‖x‖ ≤ ‖y − x‖ given that
x2 ≤ y2 + x2 ≤ (y − x)2.

Declaration II:10(2.02)

The notation bac, where a is a rational number, will
be used as a shorthand for nu(a) div de(a).

Declaration II:11(2.03)

The notation dae, where a is a rational number, will
be used as a shorthand for (nu(a) div de(a)) + 1.

Procedure II:27(2.04)

Objective

Choose a rational number r 6= 1 and an integer
n ≥ 0. The objective of the following instructions is

to show that
∑[0:n]
t rt = 1−rn

1−r .

Implementation

1. Show that r
∑[0:n]
t rt =

∑[0:n]
t rt+1 =∑[1:n+1]

t rt.

2. Therefore show that (1 − r)
∑[0:n]
t rt =∑[0:n]

t rt −
∑[1:n+1]
t rt = 1− rn.

3. Therefore show that
∑[0:n]
t rt = 1−rn

1−r .

Procedure II:28(2.05)

Objective

Choose a rational 0 < r < 1 and an integer n ≥ 0.
The objective of the following instructions is to show

that
∑[0:n]
t rt < 1

1−r .

Implementation

1. Show that
∑[0:n]
t rt = 1−rn

1−r < 1
1−r using

procedure II:27.

Procedure II:29(2.06)

Objective

Choose a non-negative integer a and a rational num-
ber x. The objective of the following instructions is

to show that (1 + x)a =
∑[0:a+1]
r

(
a
r

)
xr.

Implementation

Instructions are analogous to those of procedure
I:84.

48



Procedure II:30(2.07)

Objective

Choose an integer r ≥ 0 and a rational number
x ≥ −1. The objective of the following instructions
is to show that (1 + x)r ≥ 1 + rx.

Implementation

1. If −1 ≤ x < 0, then do the following:

(a) Using procedure II:27, show that (1 + x)r

i. = 1 + (1 + x)r − 1

ii. = 1 + x (1+x)r−1
(1+x)−1

iii. = 1 + x
∑[0:r]
k (1 + x)k

iv. ≥ 1 + x
∑[0:r]
k 1

v. = 1 + rx.

2. Otherwise, do the following:

(a) Show that x ≥ 0.

(b) Now using procedure II:29, show that (1 +
x)r

i. =
∑[0:r+1]
k

(
r
k

)
xk

ii. ≥
(
r
0

)
x0 +

(
r
1

)
x1

iii. = 1 + rx

Procedure II:31(wed2407191348)

Objective

Choose a non-negative integer r and a rational num-
ber x > −1 such that (r − 1)x < 1. The objec-
tive of the following instructions is to show that
(1 + x)r ≤ 1+x

1−(r−1)x .

Implementation

1. Show that 1− x
1+x = 1

1+x > 0.

2. Hence show that (1 − x
1+x )r ≥ 1 − rx

1+x using
procedure II:30.

3. Hence show that (1− x
1+x )r ≥ 1− rx

1+x > 0

(a) given that 0 < 1+x−rx
1+x = 1− rx

1+x

(b) given that 0 < 1 + x− rx

(c) given that (r − 1)x < 1.

4. Hence show that (1 + x)r

(a) = ( 1
1+x )−r

(b) = (1− x
1+x )−r

(c) ≤ (1− rx
1+x )−1

(d) = 1+x
1−(r−1)x .
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Chapter 6

Perplex Arithmetic

Declaration II:12(wed0502201651)

The phrase ”perplex number” will be used as a
shorthand for a pair of rational numbers.

Declaration II:13(sun0902201114)

The phrase ”the real part of a” and the notation
re(a), where a is a perplex number, will be used as
a shorthand for the first entry of a.

Declaration II:14(sun0902201115)

The phrase ”the imaginary part of a” and the no-
tation im(a), where a is a perplex number, will be
used as a shorthand for the second entry of a.

Declaration II:15(sat0802201051)

The phrase ”a = b”, where a, b are perplex numbers,
will be used as a shorthand for ”re(a) = re(b) and
im(a) = im(b)”.

Procedure II:32(sun0902201116)

Objective

Choose a perplex number a. The objective of the
following instructions is to show that a = a.

Implementation

1. Show that re(a) = re(a).

2. Show that im(a) = im(a).

3. Hence show that a = a.

Procedure II:33(sun0902201117)

Objective

Choose two perplex numbers a, b such that a = b.
The objective of the following instructions is to show
that b = a.

Implementation

1. Show that re(b) = re(a) given that re(a) =
re(b).

2. Show that im(b) = im(a) given that im(a) =
im(b).

3. Hence show that b = a.

Procedure II:34(sun0902201118)

Objective

Choose three perplex numbers a, b, c such that a = b
and b = c. The objective of the following instruc-
tions is to show that a = c.

Implementation

1. Show that re(a) = re(c)

(a) given that re(a) = re(b)

(b) and re(b) = re(c).

2. Show that im(a) = im(c)

(a) given that im(a) = im(b)

(b) and im(b) = im(c).

3. Hence verify that a = c.
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Declaration II:16(sun0902201119)

The notation a+ b, where a, b are perplex numbers,
will be used as a shorthand for the perplex number
〈re(a) + re(b), im(a) + im(b)〉.

Procedure II:35(sun0902201120)

Objective

Choose two perplex numbers a, b, c, d such that a = c
and b = d. The objective of the following instruc-
tions is to show that a+ b = c+ d.

Implementation

1. Using declaration II:15, show that

(a) re(a) = re(c)

(b) im(a) = im(c)

(c) re(b) = re(d)

(d) im(b) = im(d).

2. Hence show that a+ b

(a) = 〈re(a), im(a)〉+ 〈re(b), im(b)〉

(b) = 〈re(a) + re(b), im(a) + im(b)〉

(c) = 〈re(c) + re(d), im(c) + im(d)〉

(d) = 〈re(c), im(c)〉+ 〈re(d), im(d)〉

(e) = c+ d.

Procedure II:36(sun0902201121)

Objective

Choose three perplex numbers a, b, c. The objec-
tive of the following instructions is to show that
(a+ b) + c = a+ (b+ c).

Implementation

1. Show that (a+ b) + c

(a) = 〈re(a)+re(b), im(a)+im(b)〉+〈re(c), im(c)〉

(b) = 〈(re(a) + re(b)) + re(c), (im(a) + im(b)) +
im(c)〉

(c) = 〈re(a) + (re(b) + re(c)), im(a) + (im(b) +
im(c))〉

(d) = 〈re(a), im(a)〉+〈re(b)+re(c), im(b)+im(c)〉

(e) = a+ (b+ c).

Procedure II:37(sun0902201122)

Objective

Choose two perplex numbers a, b. The objective of
the following instructions is to show that a + b =
b+ a.

Implementation

1. Show that a+ b

(a) = 〈re(a) + re(b), im(a) + im(b)〉

(b) = 〈re(b) + re(a), im(b) + im(a)〉

(c) = b+ a.

Declaration II:17(sun0902201123)

The notation a, where a is a rational number, will
contextually be used as a shorthand for the perplex
number 〈a, 0〉.

Procedure II:38(sun0902201124)

Objective

Choose a perplex number a. The objective of the
following instructions is to show that 0 + a = a.

Implementation

1. Show that 0 + a

(a) = 〈0, 0〉+ 〈re(a), im(a)〉

(b) = 〈0 + re(a), 0 + im(a)〉

(c) = 〈re(a), im(a)〉

(d) = a.

Declaration II:18(sun0902201125)

The notation −a, where a is a perplex number,
will be used as a shorthand for the pair 〈− re(a),
− im(a)〉.

Procedure II:39(sun0902201126)

Objective

Choose a perplex number a. The objective of the
following instructions is to show that −a+ a = 0.
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Implementation

1. Show that −a+ a

(a) = (−a) + a

(b) = 〈− re(a),− im(a)〉+ 〈re(a), im(a)〉

(c) = 〈− re(a) + re(a),− im(a) + im(a)〉

(d) = 〈0, 0〉

(e) = 0.

Declaration II:19(sun0902201127)

The notation ab, where a, b are perplex numbers,
will be used as a shorthand for the perplex number
〈re(a) re(b)+im(a) im(b), re(a) im(b)+im(a) re(b)〉.

Procedure II:40(sun0902201128)

Objective

Choose four perplex numbers a, b, c, d such that
a = c and b = d. The objective of the following
instructions is to show that ab = cd.

Implementation

1. Using declaration II:15, show that

(a) re(a) = re(c)

(b) im(a) = im(c)

(c) re(b) = re(d)

(d) im(b) = im(d).

2. Hence show that ab

(a) = 〈re(a), im(a)〉〈re(b), im(b)〉

(b) = 〈re(a) re(b) + im(a) im(b), re(a) im(b) +
im(a) re(b)〉

(c) = 〈re(c) re(d) + im(c) im(d), re(c) im(d) +
im(c) re(d)〉

(d) = 〈re(c), im(c)〉〈re(d), im(d)〉

(e) = cd.

Procedure II:41(sun0902201129)

Objective

Choose three perplex numbers a, b, c. The objec-
tive of the following instructions is to show that
(ab)c = a(bc).

Implementation

1. Show that (ab)c

(a) = 〈re(a) re(b) + im(a) im(b), re(a) im(b) +
im(a) re(b)〉〈re(c), im(c)〉

(b) = 〈(re(a) re(b) + im(a) im(b)) re(c) +
(re(a) im(b)+im(a) re(b)) im(c), (re(a) re(b)+
im(a) im(b)) im(c) + (re(a) im(b) +
im(a) re(b)) re(c)〉

(c) = 〈re(a)(re(b) re(c) + im(b) im(c)) +
im(a)(re(b) im(c)+im(b) re(c)), re(a)(re(b) im(c)+
im(b) re(c))+im(a)(re(b) re(c)+im(b) im(c))〉

(d) = 〈re(a), im(a)〉〈re(b) re(c) + im(b) im(c),
re(b) im(c) + im(b) re(c)〉

(e) = a(bc).

Procedure II:42(sun0902201130)

Objective

Choose two perplex numbers a, b. The objective of
the following instructions is to show that ab = ba.

Implementation

1. Show that ab

(a) = 〈re(a) re(b) + im(a) im(b), re(a) im(b) +
im(a) re(b)〉

(b) = 〈re(b) re(a) + im(b) im(a), re(b) im(a) +
im(b) re(a)〉

(c) = ba.

Procedure II:43(sun0902201131)

Objective

Choose a perplex number a. The objective of the
following instructions is to show that 1a = a.

Implementation

1. Show that 1a

(a) = 〈1, 0〉〈re(a), im(a)〉

(b) = 〈1 re(a) + 0 im(a), 1 im(a) + 0 re(a)〉

(c) = 〈re(a), im(a)〉

(d) = a.
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Procedure II:44(sat0802201553)

Objective

Choose three perplex numbers a, b, c. The objec-
tive of the following instructions is to show that
a(b+ c) = ab+ ac.

Implementation

1. a(b+ c)

(a) = 〈re(a), im(a)〉〈re(b) + re(c), im(b) + im(c)〉

(b) = 〈re(a)(re(b)+re(c))+im(a)(im(b)+im(c)),
re(a)(im(b) + im(c)) + im(a)(re(b) + re(c))〉

(c) = 〈(re(a) re(b)+im(a) im(b))+(re(a) re(c)+
im(a) im(c)), (re(a) im(b) + im(a) re(b)) +
(re(a) im(c) + im(a) re(c))〉

(d) = 〈re(a) re(b) + im(a) im(b), re(a) im(b) +
im(a) re(b)〉 + 〈re(a) re(c) + im(a) im(c),
re(a) im(c) + im(a) re(c)〉

(e) = ab+ ac.

Declaration II:20(sun0902201132)

The notation (a)−, where a is a perplex number,
will be used as a shorthand for the perplex number
〈re(a),− im(a)〉.

Procedure II:45(sun0902201133)

Objective

Choose two perplex numbers a, b. The objective of
the following instructions is to show that (a+ b)− =
(a)− + (b)−.

Implementation

1. Show that (a+ b)−

(a) = 〈re(a+ b),− im(a+ b)〉

(b) = 〈re(a) + re(b),− im(a)− im(b)〉

(c) = (a)− + (b)−.

Procedure II:46(sun0902201134)

Objective

Choose two perplex numbers a, b. The objective of
the following instructions is to show that (ab)− =
(a)−(b)−.

Implementation

1. Show that (ab)−

(a) = 〈re(ab),− im(ab)〉

(b) = 〈re(a) re(b) + im(a) im(b)),− re(a) im(b)−
im(a) re(b)〉

(c) = 〈re(a),− im(a)〉〈re(b),− im(b)〉

(d) = (a)−(b)−.

Declaration II:21(sun0902201140)

The notation ‖a‖2, where a is a perplex number,
will be used as a shorthand for re(a)2 − im(a)2.

Procedure II:47(sun0902201141)

Objective

Choose a perplex number a. The objective of the
following instructions is to show that a(a)− = ‖a‖2.

Implementation

1. Show that a(a)− = ‖a‖2.

Declaration II:22(wed0502201719)

The notation a < b, where a, b are perplex numbers,
will be used as a shorthand for 0 < re(b − a) and
‖b− a‖2 ≥ 0.

Procedure II:48(sat0802200648)

Objective

Choose four perplex numbers a, b, c, d such that
a < b, a = c and b = d. The objective of the
following instructions is to show that c < d.

Implementation

1. Show that re(a) = re(c) and im(a) = im(c)
using declaration II:15 given that a = c.

2. Show that re(b) = re(d) and im(b) = im(d)
using declaration II:15 given that b = d.

3. Show that 0 < re(b−a) and ‖b−a‖2 ≥ 0 using
declaration II:22 given that a < b.

4. Hence show that re(d− c) = re(b− a) > 0.

5. Also show that ‖d− c‖2 = ‖b− a‖2 ≥ 0.
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6. Hence show that c < d using declaration
II:22.

Procedure II:49(sun0902201135)

Objective

Choose three perplex numbers a, b, c such that a < b.
The objective of the following instructions is to show
that a+ c < b+ c.

Implementation

1. Show that 0 < re(b−a) and ‖b−a‖2 ≥ 0 using
declaration II:22 given that a < b.

2. Hence show that re((b+ c)− (a+ c)) = re(b−
a) > 0.

3. Also show that ‖(b+c)−(a+c)‖2 = ‖b−a‖2 ≥
0.

4. Hence show that a+ c < b+ c using dec-
laration II:22.

Procedure II:50(sun0902201138)

Objective

Choose two perplex numbers a, b such that 0 < a
and 0 < b. The objective of the following instruc-
tions is to show that 0 < a+ b.

Implementation

1. Show that 0 < re(a) and ‖a‖2 ≥ 0 using dec-
laration II:22 given that 0 < a.

2. Show that 0 < re(b) and ‖b‖2 ≥ 0 using decla-
ration II:22 given that 0 < b.

3. Hence show that re(a+ b) = re(a) + re(b) > 0
given that 0 < re(a) and 0 < re(b).

4. Also show that ‖a + b‖2 = re(a + b)2 −
im(a + b)2 = re(a)2 − im(a)2 + re(b)2 −
im(b)2 + 2(re(a) re(b)− im(a) im(b)) = ‖a‖2 +
‖b‖2 +(re(a)− im(a))(re(b)+ im(b))+(re(a)+
im(a))(re(b)− im(b)) ≥ 0.

5. Hence show that 0 < a + b using decla-
ration II:22 given that re(a + b) > 0 and
‖a+ b‖2 ≥ 0.

Procedure II:51(sun0902201139)

Objective

Choose two perplex numbers a, b such that 0 < a
and 0 < b. The objective of the following instruc-
tions is to show that 0 ≤ ab.

Implementation

1. Show that 0 < re(a) and ‖a‖2 ≥ 0 using dec-
laration II:22 given that 0 < a.

2. Show that 0 < re(b) and ‖b‖2 ≥ 0 using decla-
ration II:22 given that 0 < b.

3. Hence show that re(ab) = re(a) re(b) +
im(a) im(b) ≥ re(a) re(b)− re(a) re(b) = 0.

4. Also show that ‖ab‖2 = ‖a‖2‖b‖2 ≥ 0.

5. If re(ab) = 0, then do the following:

(a) Show that ab = 0 using declaration
II:15 given that im(ab) = 0 given that
im(ab)2 ≤ re(ab)2 = 0 given that ‖ab‖2 ≥
0.

6. Otherwise do the following:

(a) Show that ab > 0 using declaration
II:22 given that re(ab) > 0 and ‖ab‖2 ≥
0.

Declaration II:23(wed0502201655)

The notations a ⊂ b and b ⊃ a, where a, b are
perplex numbers, will be used as shorthands for
‖b− a‖2 ≤ 0 and im(b− a) > 0.

Procedure II:52(sun1602201324)

Objective

Choose four perplex numbers a, b, c, d such that
a ⊂ b, a = c and b = d. The objective of the
following instructions is to show that c ⊂ d.

Implementation

1. Show that re(a) = re(c) and im(a) = im(c)
using declaration II:15 given that a = c.

2. Show that re(b) = re(d) and im(b) = im(d)
using declaration II:15 given that b = d.

3. Show that 0 < im(b − a) and ‖b − a‖2 ≤ 0
using declaration II:23 given that a ⊂ b.
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4. Hence show that im(d− c) = im(b− a) > 0.

5. Also show that ‖d− c‖2 = ‖b− a‖2 ≤ 0.

6. Hence show that c ⊂ d using declaration
II:23.

Procedure II:53(sun1602201330)

Objective

Choose three perplex numbers a, b, c such that a ⊂ b.
The objective of the following instructions is to show
that a+ c ⊂ b+ c.

Implementation

1. Show that 0 < im(b − a) and ‖b − a‖2 ≤ 0
using declaration II:23 given that a ⊂ b.

2. Hence show that im((b + c) − (a + c)) =
im(b− a) > 0.

3. Also show that ‖(b+c)−(a+c)‖2 = ‖b−a‖2 ≤
0.

4. Hence show that a+ c ⊂ b+ c using dec-
laration II:23.

Procedure II:54(sun1602201336)

Objective

Choose two perplex numbers a, b such that 0 ⊂ a
and 0 ⊂ b. The objective of the following instruc-
tions is to show that 0 ⊂ a+ b.

Implementation

1. Show that 0 < im(a) and ‖a‖2 ≤ 0 using dec-
laration II:23 given that 0 ⊂ a.

2. Show that 0 < im(b) and ‖b‖2 ≤ 0 using dec-
laration II:23 given that 0 ⊂ b.

3. Hence show that im(a+b) = im(a)+im(b) > 0
given that 0 < im(a) and 0 < im(b).

4. Also show that ‖a + b‖2 = re(a + b)2 −
im(a + b)2 = re(a)2 − im(a)2 + re(b)2 −
im(b)2 + 2(re(a) re(b)− im(a) im(b)) = ‖a‖2 +
‖b‖2 +(re(a)− im(a))(re(b)+ im(b))+(re(a)+
im(a))(re(b)− im(b)) ≤ 0.

5. Hence show that 0 ⊂ a + b using decla-
ration II:23 given that im(a + b) > 0 and
‖a+ b‖2 ≤ 0.

Procedure II:55(sun1602201526)

Objective

Choose two perplex numbers a, b such that 0 ⊂ a
and 0 ⊂ b. The objective of the following instruc-
tions is to show that 0 ≤ ab.

Implementation

1. Show that 0 < im(a) and ‖a‖2 ≤ 0 using dec-
laration II:23 given that 0 ⊂ a.

2. Show that 0 < im(b) and ‖b‖2 ≤ 0 using dec-
laration II:23 given that 0 ⊂ b.

3. Hence show that re(ab) = re(a) re(b) +
im(a) im(b) ≥ − im(a) im(b)+im(a) im(b) = 0.

4. Also show that ‖ab‖2 = ‖a‖2‖b‖2 ≥ 0.

5. If re(ab) = 0, then do the following:

(a) Show that ab = 0 using declaration
II:15 given that im(ab) = 0 given that
im(ab)2 ≤ re(ab)2 = 0 given that ‖ab‖2 ≥
0.

6. Otherwise do the following:

(a) Show that ab > 0 using declaration
II:22 given that re(ab) > 0 and ‖ab‖2 ≥
0.

Procedure II:56(sun1602201531)

Objective

Choose two perplex numbers a, b such that 0 ⊂ a
and 0 < b. The objective of the following instruc-
tions is to show that 0 ⊆ ab.

Implementation

1. Show that 0 < im(a) and ‖a‖2 ≤ 0 using dec-
laration II:23 given that 0 ⊂ a.

2. Show that 0 < re(b) and ‖b‖2 ≥ 0 using decla-
ration II:22 given that 0 < b.

3. Hence show that im(ab) = re(a) im(b) +
im(a) re(b) ≥ − im(a) re(b) + im(a) im(b) = 0.

4. Also show that ‖ab‖2 = ‖a‖2‖b‖2 ≤ 0.

5. If im(ab) = 0, then do the following:

(a) Show that ab = 0 using declaration
II:15 given that re(ab) = 0 given that
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re(ab)2 ≤ im(ab)2 = 0 given that ‖ab‖2 ≤
0.

6. Otherwise do the following:

(a) Show that ab ⊃ 0 using declaration
II:23 given that im(ab) > 0 and ‖ab‖2 ≤
0.

Procedure II:57(sun0902201136)

Objective

Choose two perplex numbers a, b such that ‖b −
a‖2 6= 0. The objective of the following instruc-
tions is to show that either a < b, a > b, a ⊂ b, or
a ⊃ b.

Implementation

1. Given that ‖b− a‖2 6= 0, show that either

(a) ‖b− a‖2 > 0 and re(b− a) > 0

(b) ‖b− a‖2 > 0 and re(b− a) < 0

(c) ‖b− a‖2 < 0 and im(b− a) > 0

(d) ‖b− a‖2 < 0 and im(b− a) < 0.

2. Hence show that either:

(a) a < b using declaration II:22 given that
‖b− a‖2 > 0 and re(b− a) > 0

(b) a > b using declaration II:22 given that
‖b− a‖2 > 0 and re(b− a) < 0

(c) a ⊂ b using declaration II:23 given that
‖b− a‖2 < 0 and im(b− a) > 0

(d) a ⊃ b using declaration II:23 given that
‖b− a‖2 < 0 and im(b− a) < 0.

Declaration II:24(tue2502201203)

The phrases ”proper perplex number” and ”im-
proper perplex number” will be used as shorthands
for perplex numbers, a, such that im(a) ≥ 0 and
im(a) ≤ 0 respectively.

Declaration II:25(sun1602200918)

The phrases ”a and b intersect”, ”a and b are
disjoint”, and ”a and b adjoin”, where a and b
are perplex numbers, will be used to paraphrase
‖b−(a)−‖2 ≤ 0, ‖b−(a)−‖2 ≥ 0, and ‖b−(a)−‖2 = 0
respectively.

Procedure II:58(sat0802201500)

Objective

Choose a list of positive perplex numbers a. The ob-
jective of the following instructions is to show that

‖
∑[0:|a|]
r ar‖2 ≥

∑[0:|a|]
r ‖ar‖2.

Implementation

1. Show that re(
∑[0:|a|]
r

∑[r+1:|a|]
k ar(ak)−) > 0

given that
∑[0:|a|]
r

∑[r+1:|a|]
k ar(ak)− > 0.

2. Hence show that ‖
∑[0:|a|]
r ar‖2

(a) =
∑[0:|a|]
r

∑[0:|a|]
k ar(ak)−

(b) =
∑[0:|a|]
r ‖ar‖2+

∑[0:|a|]
r

∑[r+1:|a|]
k (ar(ak)−+

(ar(ak)−)−)

(c) =
∑[0:|a|]
r ‖ar‖2+2

∑[0:|a|]
r

∑[r+1:|a|]
k re(ar(ak)−)

(d) =
∑[0:|a|]
r ‖ar‖2+2 re(

∑[0:|a|]
r

∑[r+1:|a|]
k ar(ak)−)

(e) ≥
∑[0:|a|]
r ‖ar‖2.

Procedure II:59(sat0802201518)

Objective

Choose a non-empty list of positive perplex num-

bers a such that a0 >
∑[1:|a|]
r ar. The objec-

tive of the following instructions is to show that

‖a0‖2 −
∑[1:|a|]
r ‖ar‖2 ≥ ‖a0 −

∑[1:|a|]
r ar‖2.

Implementation

1. Using procedure II:58, show that ‖a0‖2

(a) = ‖
∑[1:|a|]
r ar + (a0 −

∑[1:|a|]
r ar)‖2

(b) ≥
∑[1:|a|]
r ‖ar‖2 + ‖a0 −

∑[1:|a|]
r ar‖2

2. Therefore show that ‖a0‖2−
∑[1:|a|]
r ‖ar‖2 ≥

‖a0 −
∑[1:|a|]
r ar‖2.

Procedure II:60(sat0802201359)

Objective

Choose a list of positive perplex numbers a and a
list of rational numbers b such that |a| = |b| and
‖ai‖2 ≥ bi

2 for each i ∈ [0 : |a|]. The objec-
tive of the following instructions is to show that

‖
∑[0:|a|]
r ar‖2 ≥ (

∑[0:|b|]
r br)

2.
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Implementation

1. If |a| = 0, then do the following:

(a) Show that ‖
∑[0:|a|]
i ai‖2 = ‖0‖2 =

(
∑[0:|b|]
i bi)

2.

2. Otherwise do the following:

(a) Show that |a| > 0.

(b) Show that ‖
∑[1:|a|]
i ai‖2 ≥ (

∑[1:|b|]
i bi)

2 us-
ing procedure II:60 on a[1:|a|] and b[1:|b|].

(c) Show that re((a0)−
∑[1:|a|]
i ai) > 0

i. given that (a0)−
∑[1:|a|]
i ai > 0

ii. given that
∑[1:|a|]
i ai > 0

iii. and (a0)− > 0.

(d) Show that re((a0)−
∑[1:|a|]
i ai)

2

i. ≥ ‖(a0)−
∑[1:|a|]
i ai‖2

ii. = ‖(a0)−‖2‖
∑[1:|a|]
i ai‖2

iii. ≥ b02(
∑[1:|a|]
i bi)

2.

(e) Hence show that ‖
∑[0:|a|]
i ai‖2

i. = (a0 +
∑[1:|a|]
i ai)((a0 +

∑[1:|a|]
i ai)

−)

ii. = ‖a0‖2 + a0(
∑[1:|a|]
i ai)

− +

(a0)−
∑[1:|a|]
i ai + ‖

∑[1:|a|]
i ai‖2

iii. ≥ b0
2 + ((a0)−

∑[1:|a|]
i ai)

− +

(a0)−
∑[1:|a|]
i ai + (

∑[1:|a|]
i bi)

2

iv. = b0
2+2 re((a0)−

∑[1:|a|]
i ai)+(

∑[1:|a|]
i bi)

2

v. ≥ b02 + 2b0
∑[1:|a|]
i bi + (

∑[1:|a|]
i bi)

2

vi. = (b0 +
∑[1:|a|]
i bi)

2

vii. = (
∑[0:|a|]
i bi)

2.

Declaration II:26(sun0902201142)

The notation 1
a , where a is a perplex number, will

be used as a shorthand for the pair 1
‖a‖2 (a)−.

Procedure II:61(sun0902201143)

Objective

Choose a perplex number a such that ‖a‖2 6= 0. The
objective of the following instructions is to show that

1
aa = 1.

Implementation

1. Show that 1
aa

(a) = ( 1
‖a‖2 (a)−)a

(b) = 1
‖a‖2 ((a)−a)

(c) = 1
‖a‖2 ‖a‖

2

(d) = 1.

Declaration II:27(sat0802201702)

The notations j and k will be used as a shorthand for
the perplex numbers 〈0, 1〉 and 〈 12 ,

1
2 〉 respectively.

Procedure II:62(thu0602201510)

Objective

The objective of the following instructions is to show
that j2 = 1, k2 = k, (k)−

2
= (k)−, k(k)− = 0,

k + (k)− = 1, and k − (k)− = j.

Implementation

1. Show that j2 = 1.

2. Show that k2 = k.

3. Show that (k)−
2

= (k)−.

4. Show that k(k)− = 0.

5. Show that k + (k)− = 1.

6. Show that k − (k)− = j.

Procedure II:63(fri1402201203)

Objective

Choose a perplex number a. The objective of the
following instructions is to show that a = re(a) +
im(a)j.

Implementation

1. Show that a

(a) = 〈re(a), im(a)〉

(b) = 〈re(a), 0〉+ 〈0, im(a)〉

(c) = re(a) + im(a)j.
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Procedure II:64(fri1402201147)

Objective

Choose a perplex number a. The objective of the
following instructions is to show that a = (re(a) +
im(a))k + (re(a)− im(a))(k)−.

Implementation

1. Using procedure II:62, show that a

(a) = re(a) + im(a)j

(b) = re(a)(k + (k)−) + im(a)(k − (k)−)

(c) = (re(a) + im(a))k + (re(a)− im(a))(k)−.

Procedure II:65(sat0802201559)

Objective

Choose rational numbers a, b, c, d. The objective
of the following instructions is to show that (ak +
b(k)−) + (ck + d(k)−) = (a+ c)k + (b+ d)(k)−.

Implementation

1. Show that (ak + b(k)−) + (ck + d(k)−) =
(a+ c)k + (b+ d)(k)−.

Procedure II:66(sun0902201144)

Objective

Choose rational numbers a, b, c, d. The objective
of the following instructions is to show that (ak +
b(k)−)(ck + d(k)−) = ack + bd(k)−.

Implementation

1. Show that (ak + b(k)−)(ck + d(k)−)

(a) = ak(ck + d(k)−) + b(k)−(ck + d(k)−)

(b) = akck + akd(k)− + b(k)−ck + b(k)−d(k)−

(c) = ack + 0ad+ 0bc+ bd(k)−

(d) = ack + bd(k)−.
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Chapter 7

Polynomial Arithmetic

Declaration II:28(2.08)

The notation min(c), where c is a list, will be used
as a shorthand for ∞ if c is empty, otherwise it will
stand for the minimum entry of c. The related nota-
tion minRr c(r), where R is a list and c[r] is a function
of r, will be used as a shorthand for min(c(R)).

Declaration II:29(2.11)

The notation max(c), where c is a list, will be used
as a shorthand for −∞ if c is empty, otherwise it
will stand for the maximum entry of c. The re-
lated notation maxRr c(r), where R is a list and c[r]
is a function of r, will be used as a shorthand for
max(c(R)).

Declaration II:30(2.25)

The phrase ”polynomial” will be used as a short-
hand for a list of rational numbers.

Declaration II:31(2.26)

The notation ai, where a is a polynomial and i is a
natural number such that i ≥ |a|, will be used as a
shorthand for 0.

Declaration II:32(2.27)

The phrase ”a = b”, where a, b are polynomials,
will be used as a shorthand for ”ai = bi for each
i ∈ [0 : max(|a|, |b|)]”.

Declaration II:33(2.28)

The notation Λ(a, b) will be used as a shorthand for∑[0:|a|]
r arb

r.

Procedure II:67(2.51)

Objective

Choose two polynomials a, b and a rational number
c such that a = b. The objective of the following
instructions is to show that Λ(a, c) = Λ(b, c).

Implementation

1. Using declaration II:32 and declaration II:33,
show that Λ(a, c)

(a) =
∑[0:|a|]
r arc

r

(b) =
∑[0:max(|a|,|b|)]
r arc

r

(c) =
∑[0:max(|a|,|b|)]
r brc

r

(d) =
∑[0:|b|]
r brc

r

(e) = Λ(b, c).

Procedure II:68(2.52)

Objective

Choose a natural number c and two polynomials a,
b such that a = b. The objective of the following
instructions is to show that ac = bc.

Implementation

1. If c < max(|a|, |b|), then do the following:

(a) Show that ac = bc.

2. Otherwise do the following:

(a) Show that ac = 0 = bc given that c ≥
max(|a|, |b|).
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Procedure II:69(2.53)

Objective

Choose a polynomial a. The objective of the follow-
ing instructions is to show that a = a.

Implementation

1. Show that ai = ai for each i ∈ [0 : max(|a|,
|a|)].

2. Hence show that a = a using declaration
II:32.

Procedure II:70(2.54)

Objective

Choose two polynomials a, b such that a = b. The
objective of the following instructions is to show that
b = a.

Implementation

1. Show that ai = bi for each i ∈ [0 : max(|a|, |b|)]
using declaration II:32.

2. Hence show that bi = ai for each i ∈ [0 :
max(|b|, |a|)].

3. Hence show that b = a using declaration
II:32.

Procedure II:71(2.55)

Objective

Choose three polynomials a, b, c such that a = b and
b = c. The objective of the following instructions is
to show that a = c.

Implementation

1. Show that ai = bi for each i ∈ [0 : max(|a|, |b|,
|c|)] using declaration II:32.

2. Show that bi = ci for each i ∈ [0 : max(|a|, |b|,
|c|)] using declaration II:32.

3. Hence show that ai = ci for each i ∈ [0 :
max(|a|, |b|, |c|)].

4. Hence verify that a = c using declaration
II:32.

Declaration II:34(2.37)

The notation 〈f(j) for j ∈ R〉, where f [j] is a func-
tion of j and R is a list, will be used as a shorthand
for 〈f(R)〉.

Declaration II:35(2.29)

The notation a+ b, where a, b are polynomials, will
be used as a shorthand for the list 〈ai + bi for i ∈
[0 : max(|a|, |b|)]〉.

Procedure II:72(2.56)

Objective

Choose two polynomials a, b and a rational number
c. The objective of the following instructions is to
show that Λ(a+ b, c) = Λ(a, c) + Λ(b, c).

Implementation

1. Using declaration II:33 and declaration II:35,
show that Λ(a+ b, c)

(a) = Λ(〈ar + br for r ∈ [0 : max(|a|, |b|)]〉, c)

(b) =
∑[0:max(|a|,|b|)]
r (ar + br)c

r

(c) =
∑[0:max(|a|,|b|)]
r arc

r +
∑[0:max(|a|,|b|)]
r brc

r

(d) =
∑[0:|a|]
r arc

r +
∑[0:|b|]
r brc

r

(e) = Λ(a, c) + Λ(b, c).

Procedure II:73(2.57)

Objective

Choose a natural number c and two polynomials a,
b. The objective of the following instructions is to
show that (a+ b)c = ac + bc.

Implementation

1. If c < max(|a|, |b|), then do the following:

(a) Show that (a+ b)c = ac + bc using decla-
ration II:35.

2. Otherwise do the following:

(a) Show that c ≥ max(|a|, |b|).

(b) Hence show that ac = 0, bc = 0, and
(a+ b)c = 0 using declaration II:31.

(c) Hence show that (a+ b)c = ac + bc.
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Procedure II:74(2.58)

Objective

Choose four polynomials a, b, c, d such that a = c
and b = d. The objective of the following instruc-
tions is to show that a+ b = c+ d.

Implementation

1. Show that ai = ci for each i ∈ [0 : max(|a|,
|b|, |c|, |d|)] using declaration II:32 given that
a = c.

2. Verify that bi = di for each i ∈ [0 : max(|a|,
|b|, |c|, |d|)] using declaration II:32 given that
b = d.

3. Hence using declaration II:35, show that a+ b

(a) = 〈ai + bi for i ∈ [0 : max(|a|, |b|, |c|, |d|)]〉

(b) = 〈ci + di for i ∈ [0 : max(|a|, |b|, |c|, |d|)]〉

(c) = c+ d.

Procedure II:75(2.59)

Objective

Choose three polynomials a, b, c. The objective of
the following instructions is to show that (a+b)+c =
a+ (b+ c).

Implementation

1. Using declaration II:35, show that (a+ b) + c

(a) 〈(a+ b)i + ci for i ∈ [0 : max(|a+ b|, |c|)]〉

(b) 〈(ai + bi) + ci for i ∈ [0 : max(|a|, |b|, |c|)]〉

(c) 〈ai + (bi + ci) for i ∈ [0 : max(|a|, |b+ c|)]〉

(d) 〈ai + (b+ c)i for i ∈ [0 : max(|a|, |b+ c|)]〉

(e) = a+ (b+ c).

Procedure II:76(2.60)

Objective

Choose two polynomials a, b. The objective of the
following instructions is to show that a+ b = b+ a.

Implementation

1. Using declaration II:35, show that a+ b

(a) = 〈ai + bi for i ∈ [0 : max(|a|, |b|)]〉

(b) = 〈bi + ai for i ∈ [0 : max(|b|, |a|)]〉

(c) = b+ a.

Declaration II:36(2.30)

The notation a, where a is a rational number, will
contextually be used as a shorthand for the list 〈a〉.

Procedure II:77(2.61)

Objective

Choose a polynomial a. The objective of the follow-
ing instructions is to show that 0 + a = a.

Implementation

1. Using declaration II:35 and declaration II:36,
show that 0 + a

(a) = 〈0i + ai for i ∈ [0 : |a|]〉

(b) = 〈0 + ai for i ∈ [0 : |a|]〉

(c) = a.

Declaration II:37(2.31)

The notation −a, where a is a polynomial, will be
used as a shorthand for the list 〈−ai for i ∈ [0 :
|a|]〉.

Procedure II:78(2.00)

Objective

Choose a polynomial a and a rational number b. The
objective of the following instructions is to show that
Λ(−a, b) = −Λ(a, b).

Implementation

1. Using declaration II:33 and declaration II:37,
show that Λ(−a, b)

(a) = Λ(〈−ai for i ∈ [0 : |a|]〉, b)

(b) =
∑[0:|a|]
j (−aj)bj

(c) = −
∑[0:|a|]
j ajb

j

(d) = −Λ(a, b).
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Procedure II:79(2.62)

Objective

Choose two polynomials a, b such that a = b. The
objective of the following instructions is to show that
−a = −b.

Implementation

1. Show that ai = bi for i ∈ [0 : max(|a|, |b|)]
using declaration II:32 given that a = b.

2. Hence using declaration II:37, show that −a

(a) = 〈−ai for i ∈ [0 : max(|a|, |b|)]〉

(b) = 〈−bi for i ∈ [0 : max(|a|, |b|)]〉

(c) = −b.

Procedure II:80(2.63)

Objective

Choose a polynomial a. The objective of the follow-
ing instructions is to show that −a+ a = 0.

Implementation

1. Using declaration II:35 and declaration II:37,
show that −a+ a

(a) = (−a) + a

(b) = 〈−ai for i ∈ [0 : |a|]〉+ 〈ai for i ∈ [0 : |a|]〉

(c) = 〈−ai + ai for i ∈ [0 : |a|]〉

(d) = 〈0 for i ∈ [0 : |a|]〉

(e) = 0.

Declaration II:38(2.32)

The notation ab, where a, b are integers, will be used

as a shorthand for the list 〈
∑[0:i+1]
r arbi−r for i ∈

[0 : |a|+ |b| − 1]〉.

Procedure II:81(2.64)

Objective

Choose two polynomials a, b and a rational number
c. The objective of the following instructions is to
show that Λ(ab, c) = Λ(a, c)Λ(b, c).

Implementation

1. Using declaration II:33 and declaration II:38,
show that Λ(ab, c)

(a) = Λ(〈
∑[0:j+1]
r arbj−r for j ∈ [0 : |a| + |b| −

1]〉, c)

(b) =
∑[0:|a|+|b|−1]
j (

∑[0:j+1]
r arbj−r)c

j

(c) =
∑[0:|a|+|b|−1]
j

∑[0:j+1]
r arc

rbj−rc
j−r

(d) =
∑[0:|a|+|b|−1]
r

∑[r:|a|+|b|−1]
j arc

rbj−rc
j−r

(e) =
∑[0:|a|+|b|−1]
r arc

r
∑[r:|a|+|b|−1]
j bj−rc

j−r

(f) =
∑[0:|a|+|b|−1]
r arc

r
∑[0:|a|+|b|−1−r]
j bjc

j

(g) =
∑[0:|a|]
r arc

r
∑[0:|a|+|b|−1−r]
j bjc

j

(h) =
∑[0:|a|]
r arc

r
∑[0:|b|]
j bjc

j

(i) = (
∑[0:|a|]
j ajc

j)(
∑[0:|b|]
j bjc

j)

(j) = Λ(a, c)Λ(b, c).

Procedure II:82(2.65)

Objective

Choose a natural number c and two polynomials a,
b. The objective of the following instructions is to

show that (ab)c =
∑[0:c+1]
r arbc−r.

Implementation

1. If c < |a|+ |b| − 1, then do the following:

(a) Show that (ab)c =
∑[0:c+1]
r arbc−r using

declaration II:38.

2. Otherwise do the following:

(a) Show that c ≥ |a|+ |b| − 1.

(b) Hence using declaration II:31, show that
(ab)c

i. = 0

ii. =
∑[0:|a|]
r 0ar +

∑[|a|:c+1]
r 0bc−r

iii. =
∑[0:|a|]
r arbc−r +

∑[|a|:c+1]
r arbc−r

iv. =
∑[0:c+1]
r arbc−r.
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Procedure II:83(2.66)

Objective

Choose four polynomials a, b, c, d such that a = c
and b = d. The objective of the following instruc-
tions is to show that ab = cd.

Implementation

1. Show that ai = ci for i ∈ [0 : max(|a|,
|c|) + max(|b|, |d|) − 1] using procedure II:68
given that a = c.

2. Show that bi = di for i ∈ [0 : max(|a|,
|c|) + max(|b|, |d|) − 1] using procedure II:68
given that b = d.

3. Hence using declaration II:38, show that ab

(a) = 〈
∑[0:i+1]
r arbi−r for i ∈ [0 : max(|a|, |c|) +

max(|b|, |d|)− 1]〉

(b) = 〈
∑[0:i+1]
r crdi−r for i ∈ [0 : max(|a|, |c|) +

max(|b|, |d|)− 1]〉

(c) = cd.

Procedure II:84(2.67)

Objective

Choose three polynomials a, b, c. The objective of
the following instructions is to show that (ab)c =
a(bc).

Implementation

1. Using declaration II:38, show that (ab)c

(a) = 〈
∑[0:j+1]
t (ab)tcj−t for j ∈ [0 : |ab| + |c| −

1]〉

(b) = 〈
∑[0:j+1]
t 〈

∑[0:i+1]
r arbi−r for i ∈ [0 : |a| +

|b| − 1]〉tcj−t for j ∈ [0 : |a|+ |b|+ |c| − 2]〉

(c) = 〈
∑[0:j+1]
t

∑[0:t+1]
r arbt−rcj−t for j ∈ [0 :

|a|+ |b|+ |c| − 2]〉

(d) = 〈
∑[0:j+1]
r

∑[r:j+1]
t arbt−rcj−t for j ∈ [0 :

|a|+ |b|+ |c| − 2]〉

(e) = 〈
∑[0:j+1]
r ar

∑[r:j+1]
t bt−rcj−t for j ∈ [0 :

|a|+ |b|+ |c| − 2]〉

(f) = 〈
∑[0:j+1]
r ar

∑[0:j−r+1]
t btcj−r−t for j ∈

[0 : |a|+ |b|+ |c| − 2]〉

(g) = 〈
∑[0:j+1]
r ar〈

∑[0:i+1]
t btci−t for i ∈ [0 :

|b|+ |c|−1]〉j−r for j ∈ [0 : |a|+ |b|+ |c|−2]〉

(h) = 〈
∑[0:j+1]
r ar(bc)j−r for j ∈ [0 : |a|+ |bc| −

1]〉

(i) = a(bc).

Procedure II:85(2.68)

Objective

Choose two polynomials a, b. The objective of the
following instructions is to show that ab = ba.

Implementation

1. Using declaration II:38, show that ab

(a) = 〈
∑[0:i+1]
r arbi−r for i ∈ [0 : |a|+ |b| − 1]〉

(b) = 〈
∑[0:i+1]
r brai−r for i ∈ [0 : |a|+ |b| − 1]〉

(c) = ba.

Procedure II:86(2.69)

Objective

Choose a polynomial a. The objective of the follow-
ing instructions is to show that 1a = a.

Implementation

1. Using declaration II:36 and declaration II:38,
show that 1a

(a) = 〈
∑[0:i+1]
r 1rai−r for i ∈ [0 : |1|+ |a| − 1]〉

(b) = 〈10ai−0 for i ∈ [0 : |a|]〉

(c) = 〈ai for i ∈ [0 : |a|]〉

(d) = a.

Procedure II:87(2.70)

Objective

Choose three polynomials a, b, c. The objective of
the following instructions is to show that a(b+ c) =
ab+ ac.
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Implementation

1. Using declaration II:35 and declaration II:38,
show a(b+ c)

(a) = 〈
∑[0:i+1]
r ar(b+ c)i−r for i ∈ [0 : |a|+ |b+

c| − 1]〉

(b) = 〈
∑[0:i+1]
r ar(bi−r + ci−r) for i ∈ [0 : |a| +

|b+ c| − 1]〉

(c) = 〈
∑[0:i+1]
r (arbi−r + arci−r) for i ∈ [0 :

|a|+ |b+ c| − 1]〉

(d) = 〈
∑[0:i+1]
r arbi−r +

∑[0:i+1]
r arci−r for i ∈

[0 : |a|+ |b+ c| − 1]〉

(e) = 〈
∑[0:i+1]
r arbi−r for i ∈ [0 : |a|+ |b|−1]〉+

〈
∑[0:i+1]
r arci−r for i ∈ [0 : |a|+ |c| − 1]〉

(f) = ab+ ac.

Declaration II:39(2.33)

The notation λ will be used as a shorthand for the
list 〈0, 1〉.

Procedure II:88(2.71)

Objective

Choose a polynomial a. The objective of the follow-
ing instructions is to show that λa = 〈0〉_a.

Implementation

1. Show that |λa| = |λ| + |a| − 1 = |a| + 1 using
declaration II:38.

2. For j ∈ [1 : |a|+ 1], do the following:

(a) Using declaration II:38, show that (λa)j

i. =
∑[0:j+1]
r λraj−r

ii. =
∑[0:j+1]
r [r = 1]aj−r

iii. = aj−1

3. Hence using declaration II:38, show that

(λa)0 =
∑[0:1]
r λra0−r = λ0a0 = 0.

4. Hence show that λa = 〈0〉_a.

Procedure II:89(2.72)

Objective

Choose a natural number n. The objective of the
following instructions is to show that λn = 〈[j =
n] for j ∈ [0 : n+ 1]〉.

Implementation

1. If n = 0, then do the following:

(a) Show that λn

i. = λ0

ii. = 〈1〉

iii. = 〈[j = 0] for j ∈ [0 : 1]〉

iv. = 〈[j = n] for j ∈ [0 : n+ 1]〉.

2. Otherwise do the following:

(a) Use procedure II:96 on 〈n− 1〉 to show that
λn−1 = 〈[j = n− 1] for j ∈ [0 : n]〉.

(b) Hence using procedure II:88, show that λn

i. = λλn−1

ii. = λ〈[j = n− 1] for j ∈ [0 : n]〉

iii. = 〈0〉_〈[j = n− 1] for j ∈ [0 : n]〉

iv. = 〈[j = n] for j ∈ [0 : n+ 1]〉.

Declaration II:40(2.34)

The notation deg(a), where a is a polynomial such
that a 6= 0, will be used as a shorthand for the
largest natural number j < |a| such that aj 6= 0.

Procedure II:90(2.73)

Objective

Choose two polynomials a, b such that a = b and
a 6= 0. The objective of the following instructions is
to show that deg(a) = deg(b).

Implementation

1. For j ∈ [max(|a|, |b|) : 0], do the following:

(a) If aj = 0, then do the following:

i. Show that 0 = aj = bj using declaration
II:32 given that a = b.

(b) Otherwise do the following:
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i. Show that 0 6= aj = bj using declaration
II:32 given that a = b.

ii. Show that j < min(|a|, |b|).

iii. Hence show that deg(a) = j = deg(b).

iv. Yield.

Procedure II:91(2.74)

Objective

Let deg(0) = −1. Choose two polynomials a, b such
that deg(a) < deg(b). The objective of the following
instructions is to show that deg(a+ b) = deg(b).

Implementation

1. For j ∈ [max(|a|, |b|) : deg(b) + 1], do the fol-
lowing:

(a) Show that j > deg(b) > deg(a).

(b) Hence show that aj = bj = 0 using declara-
tion II:40.

(c) Hence show that (a+ b)j = aj + bj = 0.

2. Show that (a + b)deg(b) = adeg(b) + bdeg(b) =
0+bdeg(b) = bdeg(b) 6= 0 using declaration II:40
given that deg(b) > deg(a).

3. Hence show that deg(a+ b) = deg(b).

Procedure II:92(2.75)

Objective

Let deg(0) = −1. Choose two polynomials a, b. The
objective of the following instructions is to show that
deg(a+ b) ≤ max(deg(a),deg(b)).

Implementation

1. For j ∈ [max(|a|, |b|) : max(deg(a),deg(b)) +
1], do the following:

(a) Show that aj = bj = 0 using declaration
II:40 given that j > deg(a) and j > deg(b).

(b) Hence show that (a+b)j = aj +bj = 0 using
declaration II:35.

2. Hence show that deg(a+ b) ≤ max(deg(a),
deg(b)) using declaration II:40.

Procedure II:93(2.76)

Objective

Let deg(0) = −1. Choose a polynomial a. The ob-
jective of the following instructions is to show that
deg(−a) = deg(a).

Implementation

1. For j ∈ [|a| : deg(a) + 1], do the following:

(a) Show that aj = 0 using declaration II:40
given that j > deg(a).

(b) Hence show that (−a)j = −(aj) = −0 = 0
using declaration II:37.

2. Show that (−a)deg(a) = −(adeg(a)) 6= 0 given
that adeg(a) 6= 0.

3. Hence show that deg(−a) = deg(a) using
declaration II:40.

Procedure II:94(2.77)

Objective

Choose two polynomials a, b such that a 6= 0 and
b 6= 0. The objective of the following instructions is
to show that (ab)deg(a)+deg(b) = adeg(a)bdeg(b) 6= 0.

Implementation

1. Show that adeg(a) 6= 0 given that a 6= 0.

2. Show that bdeg(b) 6= 0 given that b 6= 0.

3. Hence using declaration II:38, show that
(ab)deg(a)+deg(b)

(a) =
∑[0:deg(a)+deg(b)+1]
r arbdeg(a)+deg(b)−r

(b) =
∑[0:deg(a)]
r arbdeg(a)+deg(b)−r +

adeg(a)bdeg(a)+deg(b)−deg(a)+
∑[deg(a)+1:deg(a)+deg(b)+1]
r arbdeg(a)+deg(b)−r

(c) =
∑[0:deg(a)]
r 0ar + adeg(a)bdeg(b) +∑[deg(a)+1:deg(a)+deg(b)+1]

r 0bdeg(a)+deg(b)−r

(d) = adeg(a)bdeg(b)

(e) 6= 0.

Procedure II:95(2.78)

Objective

Choose two polynomials a, b such that a 6= 0 and
b 6= 0. The objective of the following instructions is
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to show that deg(ab) = deg(a) + deg(b).

Implementation

1. For j ∈ [deg(a) + deg(b) + 1 : |a|+ |b| − 1], do
the following:

(a) Using declaration II:38, show that (ab)j

i. =
∑[0:j+1]
r arbj−r

ii. =
∑[0:deg(a)+1]
r arbj−r+

∑[deg(a)+1:j+1]
r arbj−r

iii. =
∑[0:deg(a)+1]
r 0ar +

∑[deg(a)+1:j+1]
r 0bj−r

iv. = 0.

2. Now show that (ab)deg(a)+deg(b) =
adeg(a)bdeg(b) 6= 0 using procedure II:94.

3. Hence show that deg(ab) = deg(a) + deg(b)
using declaration II:40.

Declaration II:41(2.00)

The phrase ”monic polynomial” will be used to refer
to polynomials p such that p 6= 0 and pdeg(p) = 1.

Declaration II:42(2.01)

The notation mon(p), where p is a polynomial such
that p 6= 0, will be used as a shorthand for p

pdeg(p)
.

Procedure II:96(2.25)

Objective

Choose two polynomials, a, b such that b 6= 0. The
objective of the following instructions is to construct
two polynomials u,w such that a = ub + w and
deg(w) < deg(b).

Implementation

1. If deg(a) ≥ deg(b), then do the following:

(a) Let y =
adeg(a)

bdeg(b)
λdeg(a)−deg(b)

(b) Let e = a− yb.

(c) Show that deg(e) < deg(a).

(d) Use procedure II:96 on 〈e, b〉 to construct 〈c,
d〉 and show that:

i. cb+ d = e.

ii. deg(d) < deg(b).

(e) Hence show that cb+ d = a− yb given that
cb+ d = e and e = a− yb.

(f) Hence show that (y + c)b+ d = a.

(g) Now yield the tuple 〈y + c, d〉.

2. Otherwise do the following:

(a) Show that 0b+a = a and deg(a) < deg(b).

(b) Yield the tuple 〈0, a〉.

Declaration II:43(2.35)

The notation adiv b, where a, b are polynomials, will
be used to refer to the first part of the pair yielded
by executing procedure II:96 on 〈a, b〉.

Declaration II:44(2.36)

The notation a mod b, where a, b are polynomials,
will be used to refer to the second part of the pair
yielded by executing procedure II:96 on 〈a, b〉.

Procedure II:97(2.79)

Objective

Choose a polynomial a and a rational number b. The
objective of the following instructions is to show that
a mod (λ− b) = Λ(a, b).

Implementation

1. Let d = λ− b.

2. Show that d 6= 0.

3. Let c = adiv d.

4. Using procedure II:96, show that:

(a) a = cd+ (a mod d)

(b) deg(a mod d) < deg(d) = 1.

5. Hence show that deg(a mod d) = 0.

6. Now using procedure II:72 and procedure
II:81, show that Λ(a, b)

(a) = Λ(cd+ (a mod d), b)

(b) = Λ(cd, b) + Λ(a mod d, b)

(c) = Λ(c, b)Λ(d, b) + Λ(a mod d, b)

(d) = Λ(c, b)(−b+ b) + Λ(a mod d, b)

(e) = 0Λ(c, b) + Λ(a mod d, b)
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(f) = Λ(a mod d, b)

(g) = a mod d

(h) = a mod (λ− b).

Procedure II:98(fri1402201125)

Objective

Choose a polynomial a and a perplex number b.
The objective of the following instructions is to
show that re(Λ(a, b)) = 1

2 (Λ(a, re(b) + im(b)) + Λ(a,
re(b)− im(b))).

Implementation

1. Show that re(Λ(a, b))

(a) = re(
∑[0:|a|]
r arb

r)

(b) = re(
∑[0:|a|]
r ar((re(b) + im(b))k + (re(b) −

im(b))(k)−)r)

(c) =
∑[0:|a|]
r ar re((re(b) + im(b))rk + (re(b) −

im(b))r(k)−)

(d) = 1
2

∑[0:|a|]
r ar((re(b) + im(b))r + (re(b) −

im(b))r)

(e) = 1
2 (
∑[0:|a|]
r ar(re(b) + im(b))r +∑[0:|a|]

r ar(re(b)− im(b))r)

(f) = 1
2 (Λ(a, re(b)+im(b))+Λ(a, re(b)−im(b))).

Procedure II:99(fri1402201210)

Objective

Choose a polynomial a and a perplex number b.
The objective of the following instructions is to
show that im(Λ(a, b)) = 1

2 (Λ(a, re(b) + im(b))−Λ(a,
re(b)− im(b))).

Implementation

The implementation is analogous to that of proce-
dure II:98.

Procedure II:100(fri1402201213)

Objective

Choose a polynomial a and a perplex number b. The
objective of the following instructions is to show that
‖Λ(a, b)‖2 = Λ(a, re(b)− im(b))Λ(a, re(b) + im(b)).

Implementation

1. Using declaration II:21, procedure II:98, and
procedure II:99, show that ‖Λ(a, b)‖2

(a) = re(Λ(a, b))2 − im(Λ(a, b))2

(b) = ( 1
2 (Λ(a, re(b) + im(b)) + Λ(a, re(b) −

im(b))))2 − ( 1
2 (Λ(a, re(b) + im(b)) − Λ(a,

re(b)− im(b))))2

(c) = Λ(a, re(b)− im(b))Λ(a, re(b) + im(b)).

Procedure II:101(mon1702200807)

Objective

Choose a polynomial a and a perplex number b. The
objective of the following instructions is to show that
(Λ(a, b))− = Λ(a, (b)−).

Implementation

1. Show that (Λ(a, b))−

(a) = (
∑[0:|a|]
r arb

r)−

(b) =
∑[0:|a|]
r (arb

r)−

(c) =
∑[0:|a|]
r ar(b)

−r

(d) = Λ(a, (b)−).

Procedure II:102(mon1702200743)

Objective

Choose a polynomial a and two adjoint perplex num-
bers b, c. The objective of the following instructions
is to show that Λ(a, b) and Λ(a, c) are adjoint.

Implementation

1. Show that ‖c− (b)−‖2 = 0 given that b and c
are adjoint.

2. Using procedure II:101, show that ‖Λ(a, c) −
(Λ(a, b))−‖2

(a) = ‖Λ(a, c)− Λ(a, (b)−)‖2

(b) = ‖
∑[0:|a|]
r arc

r −
∑[0:|a|]
r ar(b)

−r‖2

(c) = ‖
∑[0:|a|]
r ar(c

r − (b)−
r
)‖2

(d) = ‖
∑[0:|a|]
r ar(c− (b)−)

∑[0:r]
t ct(b)−

r−1−t‖2

(e) = ‖c−(b)−‖2‖
∑[0:|a|]
r ar

∑[0:r]
t ct(b)−

r−1−t‖2
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(f) = 0‖
∑[0:|a|]
r ar

∑[0:r]
t ct(b)−

r−1−t‖2

(g) = 0.

3. Hence show that Λ(a, b) and Λ(a, c) are
adjoint.
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Chapter 8

Polynomial Sign Changes

Procedure II:103(2.80)

Objective

Choose a polynomial p 6= 0 and rational numbers
a0 < a1 < · · · < adeg(p)−2 < adeg(p)−1 in such a
way that Λ(p, ai) = 0 for i ∈ [0 : deg(p)]. The ob-
jective of the following instructions is to show that

p = pdeg(p)

∏[0:deg(p)]
j (λ− aj).

Implementation

1. Let n = deg(p).

2. If n = 0, then do the following:

(a) Show that p = p0 = pdeg(p)

∏[0:n]
j (λ− aj).

3. Otherwise do the following:

(a) Show that p mod (λ−an−1) = Λ(p, an−1) =
0 using procedure II:97 given that Λ(p,
an−1) = 0.

(b) Let q = p div(λ− an−1).

(c) Hence show that p = (λ − an−1)q + p mod
(λ− an−1) = (λ− an−1)q.

(d) For i ∈ [0 : n− 1], do the following:

i. Show that 0

A. = Λ(p, ai)

B. = Λ((λ− an−1)q, ai)

C. = Λ(λ− an−1, ai)Λ(q, ai)

D. = (ai − an−1)Λ(q, ai).

ii. Hence show that Λ(q, ai) = 0 given that
ai − an−1 6= 0.

(e) Hence use procedure II:103 on 〈q, a[0:n−1]〉
to show that q = qdeg(q)

∏[0:n−1]
j (λ− aj).

(f) Now show that pdeg(p) = (λ −
an−1)deg(λ−an−1)qdeg q = 1qdeg q = qdeg q

using procedure II:94 given that p =
(λ− an−1)q.

(g) Hence show that p = (λ − an−1)q =

qdeg q(λ − an−1)
∏[0:n−1]
j (λ − aj) =

pdeg p

∏[0:n]
j (λ− aj).

Procedure II:104(2.16)

Objective

Choose a polynomial p 6= 0 and rational numbers
a0 < a1 < · · · < adeg(p)−1 < adeg(p) in such a way
that Λ(p, ai) = 0 for i ∈ [0 : deg(p) + 1]. The ob-
jective of the following instructions is to show that
0 6= 0.

Implementation

1. Let n = deg(p).

2. Use procedure II:103 on 〈p, a[0:n]〉 to show that

p = pn
∏[0:n]
j (λ− aj).

3. Hence show that Λ(p, an) = Λ(q0

∏[0:n]
j (λ −

aj), an) = Λ(q0, an)
∏[0:n]
j Λ(λ − aj , an) =

q0

∏[0:n]
j (an − aj) 6= 0.

4. Hence show that 0 = Λ(p, an) 6= 0 given that
Λ(p, an) = 0.

5. Abort procedure.
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Procedure II:105(thu2001191149)

Objective

Choose a polynomial p and a rational number X.
The objective of the following instructions is to con-
struct a rational number a and a procedure q(y) to
show that ‖Λ(p, y)‖ ≤ a when a rational number y
such that ‖y‖ ≤ X is chosen.

Implementation

1. Let a =
∑[0:|p|]
r ‖pr‖Xr.

2. Let q(y) be the following procedure:

(a) Given that ‖y‖ ≤ X, show that ‖Λ(p, y)‖

i. = ‖
∑[0:|p|]
r pry

r‖

ii. ≤
∑[0:|p|]
r ‖pryr‖

iii. =
∑[0:|p|]
r ‖pr‖‖y‖r

iv. ≤
∑[0:|p|]
r ‖pr‖Xr

v. = a.

3. Yield the tuple 〈a, q〉.

Procedure II:106(2.15)

Objective

Choose a polynomial p and a rational number X.
The objective of the following instructions is to con-
struct a rational number a and a procedure q(z) to
show that ‖im(Λ(p, z))‖ ≤ a‖im(z)‖ when a proper
perplex number z such that z ⊆ Xj are chosen.

Implementation

1. Let a =
∑[1:|p|]
r r‖pr‖Xr−1.

2. Let q(y, z) be the following procedure:

(a) Show that ‖im(Λ(p, z))‖

i. = ‖im(
∑[0:|p|]
r prz

r)‖

ii. = ‖im(
∑[0:|p|]
r pr((re(z) − im(z))(k)− +

(re(z) + im(z))k)r)‖

iii. = ‖
∑[0:|p|]
r pr im((re(z) − im(z))r(k)− +

(re(z) + im(z))rk)‖

iv. = ‖ 1
2

∑[0:|p|]
r pr((re(z) + im(z))r− (re(z)−

im(z))r)‖

v. = ‖
∑[1:|p|]
r pr im(z)

∑[0:r]
t (re(z) +

im(z))t(re(z)− im(z))r−1−t‖

vi. ≤
∑[1:|p|]
r ‖pr‖‖im(z)‖‖

∑[0:r]
t (re(z) +

im(z))t(re(z)− im(z))r−1−t‖

vii. ≤
∑[1:|p|]
r ‖pr‖‖im(z)‖

∑[0:r]
t ‖(re(z) +

im(z))t‖‖(re(z)− im(z))r−1−t‖

viii. ≤
∑[1:|p|]
r ‖pr‖‖im(z)‖

∑[0:r]
t XtXr−1−t

ix. = ‖im(z)‖
∑[1:|p|]
r ‖pr‖

∑[0:r]
t Xr−1

x. = ‖im(z)‖
∑[1:|p|]
r r‖pr‖Xr−1

xi. = a‖im(z)‖

3. Yield the tuple 〈a, q〉.

Procedure II:107(thu3001201111)

Objective

Choose a polynomial p and a rational number X.
The objective of the following instructions is to con-
struct a rational number a > 0 and a procedure q(z)
to show that ‖Λ(p, re(z)± im(z))‖ ≤ a‖im(z)‖ when
a proper perplex number z such that z ⊆ Xj, and
‖Λ(p, z)‖2 ≤ 0 are chosen.

Implementation

1. Use procedure II:106 on 〈p,X〉 to construct
〈a1, q1〉.

2. Let a = 2a1.

3. Let q(y, z) be the following procedure:

(a) Show that ‖im(Λ(p, z))‖ ≤ a1‖im(z)‖ using
procedure q1.

(b) Show that Λ(p, re(z) + im(z))Λ(p, re(z) −
im(z)) = ‖Λ(p, z)‖2 ≤ 0 using procedure
II:100.

(c) Hence using procedure II:26 show that ‖Λ(p,
re(z)± im(z))‖

i. ≤ ‖Λ(p, re(z) + im(z))‖ + ‖Λ(p, re(z) −
im(z))‖

ii. = ‖Λ(p, re(z)+im(z))−Λ(p, re(z)−im(z))‖

iii. = 2‖im(Λ(p, z))‖

iv. ≤ 2a1‖im(z)‖

v. ≤ a‖im(z)‖.
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4. Yield the tuple 〈a, q〉.

Procedure II:108(sat0102201050)

Objective

Choose a polynomial f , a proper perplex number c,
and a rational number B such that ‖Λ(f, c)‖2 ≤ 0
and B > 0. The objective of the following instruc-
tions is to construct a proper perplex number e such
that e ⊆ c, im(e) < B and ‖Λ(f, e)‖2 ≤ 0.

Implementation

1. If ‖im(c)‖ < B, then do the following:

(a) Yield the tuple 〈c〉.

2. Otherwise do the following:

(a) Let g = (re(c)−im(c))(k)−+re(c)k and show
that g ⊆ c and ‖im(g)‖ = 1

2‖im(c)‖.

(b) Let m = re(c)(k)− + (re(c) + im(c))k and
show that m ⊆ c and ‖im(m)‖ = 1

2‖im(c)‖.

(c) Show that re(c) − im(c) = re(g) − im(g),
re(g) + im(g) = re(m)− im(m), and re(m) +
im(m) = re(c) + im(c).

(d) If ‖Λ(f, g)‖2 ≤ 0, then do the following:

i. Use procedure II:108 on 〈f, g,B〉 to con-
struct 〈e, h〉 and show that:

A. e ⊆ g ⊆ c

B. ‖im(e)‖ < B

C. ‖Λ(f, e)‖2 ≤ 0.

(e) Otherwise do the following:

i. Given that ‖Λ(f, c)‖2 ≤ 0 and ‖Λ(f,
g)‖2 > 0, show that ‖Λ(f,m)‖2

A. = Λ(f, re(m) − im(m))Λ(f, re(m) +
im(m))

B. = Λ(f,re(m)−im(m))
Λ(f,re(g)−im(g)) Λ(f, re(g) −

im(g))Λ(f, re(m) + im(m))

C. = Λ(f,re(g)+im(g))
Λ(f,re(g)−im(g))‖Λ(f, c)‖2

D. ≤ 0.

ii. Hence use procedure II:108 on 〈f,m,B〉 to
construct 〈e〉 and show that:

A. e ⊆ m ⊆ c

B. ‖im(e)‖ < B

C. ‖Λ(f, e)‖2 ≤ 0.

(f) Yield the tuple 〈e〉.

Procedure II:109(2.17)

Objective

Choose a polynomial f , a proper perplex number a,
and a rational number B such that ‖Λ(f, a)‖2 ≤ 0
and B > 0. The objective of the following instruc-
tions is to construct a proper perplex number d such
that d ⊆ a, ‖Λ(f, d)‖2 ≤ 0, and ‖im(Λ(f, d))‖ < B.

Implementation

1. Use procedure II:106 on 〈f, ‖re(a)‖+ ‖im(b)‖〉
to construct 〈G, q〉.

2. Use procedure II:108 on 〈f, a, BG 〉 to construct
〈c〉 and show that:

(a) c ⊆ a

(b) ‖im(c)‖ ≤ B
G

(c) ‖Λ(f, c)‖2 ≤ 0.

3. Use procedure q on 〈c〉 to show that
‖im(Λ(f, c))‖ ≤ G‖im(c)‖ ≤ GB

G = B.

4. Yield the tuple 〈c〉.

Declaration II:45(tue2502201328)

The notation µp(x), where x is a perplex number
and p is a perplex polynomial, will be used as a
shorthand for x if im(Λ(p, x)) > 0 and (x)− if
im(Λ(p, x)) < 0.

Procedure II:110(tue2502201349)

Objective

Choose a perplex polynomial p and an increasing
list of pairwise disjoint proper perplex numbers r
such that |r| = deg(p) and −Λ(p, ri) ∼ ±j ∼ Λ(p,
(ri)
−) for 0 < i < |r|. The objective of the fol-

lowing instructions is to construct a list of perplex
numbers t such that |t| = |r| and µλ(ti) ⊆ ri for
0 < i < |r|, and a procedure q(x) to show that Λ(p,

x) ⊇ p|t|
∏[0:|t|]
m (x− (tm)±) when a perplex number

x that is disjoint from r is chosen.
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Implementation

1) If deg(p) = 0, then do the following:

a) Let t = 〈〉.

b) Let q(x) be the following procedure:

i) Show that Λ(p, x)

(1) = p0

(2) ⊇ p|t|
∏[0:|t|]
m (x− (tm)±).

c) Yield the tuple 〈t, q〉.

2) Otherwise do the following:

a) Let z = max(Λ(p, µp(r))(k)−) + min(Λ(p,
µp(r))k).

b) Let y = min(−(re(z)−im(z)), re(z)+im(z)).

c) Use procedure II:109 on 〈p, r0,
1
2y〉 to con-

struct t0 and show that:

i) t0 is a proper perplex number

ii) t0 ⊆ r0

iii) ‖Λ(p, t0)‖2 ≤ 0

iv) ‖im(Λ(p, t0))‖ < 1
2y.

d) Hence show that Λ(p, µp(t0)) ⊆ yj ⊆ z.

e) Let d =
∑[0:|r|+1]
m pm

∑[0:m]
n λnt0

m−1−n.

f) For i in [1 : |r|], do the following:

i) Show that Λ(p, µp(t0)) ⊆ z ⊆ Λ(p, µp(ri)).

ii) Hence show that −(ri − t0)Λ(d, ri)

(1) = −Λ(λ− t0, ri)Λ(d, ri)

(2) = −Λ((λ− t0)d, ri)

(3) = −(Λ(p, ri)− Λ(p, t0))

(4) ∼ −Λ(p, ri)

(5) ∼ ±j

(6) ∼ Λ(p, (ri)
−)

(7) ∼ Λ(p, (ri)
−)− Λ(p, t0)

(8) = Λ((λ− t0)d, (ri)
−)

(9) = Λ(λ− t0, (ri)−)Λ(d, (ri)
−)

(10) = ((ri)
− − t0)Λ(d, (ri)

−)

iii) Hence show that −Λ(d, ri) ∼ ±j ∼ Λ(d,
(ri)
−)

(1) given that ri − t0 > 0

(2) and (ri)
− − t0 > 0.

g) Use procedure II:110 on 〈d, r[1:|r|]〉 to con-
struct 〈t[1:|r|], u〉.

h) Use procedure II:111 on 〈d, r[1:|r|]〉 to con-
struct 〈t[1:|r|], w〉.

i) Let q(x) be the following procedure:

i) If x > µp(t0), then do the following:

(1) Using procedure u, show that Λ(d, x)

(a) ⊇ d|t|−1

∏[1:|t|]
m (x− (tm)±)

(b) = p|t|
∏[1:|t|]
m (x− (tm)±).

(2) Given that x − µp(t0) > 0, show that
Λ(p, x)

(a) = Λ((λ− µp(t0))d, x) + Λ(p, µp(t0))

(b) ⊇ Λ((λ− µp(t0))d, x)

(c) = (x− µp(t0))Λ(d, x)

(d) ⊇ (x− µp(t0))p|t|
∏[1:|t|]
m (x− (tm)±)

(e) = p|t|
∏[0:|t|]
m (x− (tm)±).

ii) Otherwise if x < µp(t0), then do the fol-
lowing:

(1) Using procedure w, show that Λ(d, x)

(a) ⊆ d|t|−1

∏[1:|t|]
m (x− (tm)±)

(b) = p|t|
∏[1:|t|]
m (x− (tm)±).

(2) Given that x − µp(t0) < 0, show that
Λ(p, x)

(a) = Λ((λ− µp(t0))d, x) + Λ(p, µp(t0))

(b) ⊇ Λ((λ− µp(t0))d, x)

(c) = (x− µp(t0))Λ(d, x)

(d) ⊇ (x− µp(t0))p|t|
∏[1:|t|]
m (x− (tm)±)

(e) = p|t|
∏[0:|t|]
m (x− (tm)±).

j) Yield the tuple 〈t, q〉.
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Procedure II:111(thu2702201419)

Objective

Choose a perplex polynomial p and an increasing
list of pairwise disjoint proper perplex numbers r
such that |r| = deg(p) and −Λ(p, ri) ∼ ±j ∼ Λ(p,
(ri)
−) for 0 < i < |r|. The objective of the fol-

lowing instructions is to construct a list of perplex
numbers t such that |t| = |r| and µλ(ti) ⊆ ri for
0 < i < |r|, and a procedure q(x) to show that Λ(p,

x) ⊆ p|t|
∏[0:|t|]
m (x− (tm)±) when a perplex number

x that is disjoint from r is chosen.

Implementation

Implementation is analogous to that of procedure
II:110.

Procedure II:112(2.18)

Objective

Choose a polynomial f 6= 0 and pairs of rational
numbers (adeg(f), bdeg(f)), (adeg(f)−1, bdeg(f)−1), · · · ,
(a0, b0) in such a way that:

1. adeg(f) < bdeg(f) ≤ adeg(f)−1 < bdeg(f)−1 ≤
· · · ≤ a1 < b1 ≤ a0 < b0.

2. sgn(Λ(f, ai)) = − sgn(Λ(f, bi)) for i ∈ [0 :
deg(f) + 1].

The objective of the following instructions is to show
that 1 = −1.

Implementation

1. If deg(f) > 0:

(a) Let B = min
[0:deg(f)−1]
k min(|Λ(f, ak)|, |Λ(f,

bk)|).

(b) For k ∈ [0 : deg(f)], verify that |Λ(f, ak)| ≥
B.

(c) Execute procedure II:109 on the formal poly-
nomial f , interval (adeg(f), bdeg(f)), and tar-
get of B. Let the tuple 〈d〉 receive the result.

(d) Verify that |Λ(f, d)| < B.

(e) Let h = f div(λ− d).

(f) Execute procedure II:97 on 〈f, d〉.

(g) Hence verify that f = (λ−d)h+f mod (λ−
d) = (λ− d)h+ Λ(f, d).

(h) Hence verify that 0 6= f−Λ(f, d) = (λ−d)h.

(i) Hence verify that h 6= 0.

(j) Hence verify that deg(f) = deg(f − Λ(f,
d)) = deg((λ−d)h) = deg(λ−d)+deg(h) =
1 + deg(h).

(k) Hence verify that deg(h) = deg(f)− 1.

(l) For k ∈ [0 : deg(h) + 1], do the following:

i. If Λ(f, ak) ≥ B, in-order verify that:

A. Λ(f, ak) ≥ B > |Λ(f, d)| ≥ Λ(f, d).

B. Λ(f, ak)− Λ(f, d) > 0.

C. (ak − d)Λ(h, ak) > 0.

D. Λ(h, ak) > 0.

E. Λ(f, bk) ≤ −B < −|Λ(f, d)| ≤ Λ(f, d).

F. Λ(f, bk)− Λ(f, d) < 0.

G. (bk − d)Λ(h, bk) < 0.

H. Λ(h, bk) < 0.

ii. Otherwise, if Λ(f, ak) ≤ −B, do the fol-
lowing:

A. Using steps analogous to (ji), verify
that Λ(h, ak) < 0.

B. Using steps analogous to (ji), verify
that Λ(h, bk) > 0.

(m) Execute procedure II:112 on h and adeg(h) <
bdeg(h) ≤ adeg(h)−1 < bdeg(h)−1 ≤ · · · ≤ a1 <
b1 ≤ a0 < b0.

2. Otherwise, do the following:

(a) Verify that deg(f) = 0.

(b) Therefore verify that f = f0 6= 0.

(c) Therefore verify that sgn(f0) = sgn(Λ(f,
a0)) = − sgn(Λ(f, b0)) = − sgn(f0).

(d) Therefore verify that 1 = −1.

(e) Abort procedure.

Procedure II:113(2.19)

Objective

Choose two lists of polynomials s, q in such a way
that:

1. |s| > 1.
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2. For i in [0 : |s|], deg(si) = i.

3. For i in [0 : |s|], sgn((si)i) = sgn((sm)m).

4. For i in [1 : |s| − 1], si−1 + si+1 = qisi.

The objective of the following instructions is to con-
struct lists of polynomials g, h such that gisi+1 +
hisi = 1 for i in [0 : |s| − 1].

Implementation

1. Let m = |s| − 1

2. Let g = h = 〈〉.

3. If m > 1, do the following:

(a) Verify that qm−1sm−1 − sm = sm−2.

(b) Execute procedure II:113 on s[0:m] and
q[1:m−1] and let the tuple 〈, , g, h〉 receive.

(c) Verify that gm−2sm−1 + hm−2sm−2 = 1.

(d) Let gm−1 = −hm−2.

(e) Let hm−1 = gm−2 + hm−2qm−1.

(f) Therefore verify that gm−1sm + hm−1sm−1

i. = gm−2sm−1 + hm−2(qm−1sm−1 − sm)

ii. = gm−2sm−1 + hm−2sm−2

iii. = 1.

4. Otherwise, if m = 1 do the following:

(a) Let g0 = 0.

(b) Let h0 = 1
s0

.

(c) Therefore verify that g0s1 + h0s0 = 1.

5. Yield the tuple 〈s, q, g, h〉.

Procedure II:114(fri3101200641)

Objective

Choose polynomials g, h, p, q and a rational number
X such that gp+hq = 1. The objective of the follow-
ing instructions is to construct a rational numbers
a and a procedure r(y, z) to show that Λ(p, y)Λ(p,
z) > 0 when two rational numbers y, z such that
‖y‖ ≤ X, ‖z‖ ≤ X, ‖y − z‖ ≤ a, and Λ(q, y)Λ(q,
z) ≤ 0 are chosen.

Implementation

1. Use procedure II:107 on 〈p,X〉 to construct
〈a1, r1〉.

2. Use procedure II:107 on 〈q,X〉 to construct
〈a2, r2〉.

3. Use procedure II:105 on 〈g,X〉 to construct
〈a3, r3〉.

4. Use procedure II:105 on 〈h,X〉 to construct
〈a4, r4〉.

5. Let a = 1
a1a3+a2a4+1 .

6. Let r(y, z) be the following procedure:

(a) If Λ(p, y)Λ(p, z) ≤ 0, then do the following:

i. Show that ‖Λ(p, y)‖ ≤ a1‖z − y‖ ≤ a1a
using procedure r1.

ii. Show that ‖Λ(q, y)‖ ≤ a2‖z − y‖ ≤ a2a
using procedure r2.

iii. Show that ‖Λ(g, y)‖ ≤ a3 using procedure
r3.

iv. Show that ‖Λ(h, y)‖ ≤ a4 using procedure
r4.

v. Given that gp + hq = 1, show that Λ(gp,
y) + Λ(h, y)Λ(q, y)

A. = Λ(gp+ hq, y)

B. = Λ(1, y)

C. = 1.

vi. Hence show that Λ(gp, y)

A. = 1− Λ(h, y)Λ(q, y)

B. ≥ 1− a4a2a

C. = a1a3+1
a1a3+a2a4+1

D. = (a1a3 + 1)a

E. > a1a3a

F. ≥ ‖Λ(p, y)‖‖Λ(g, y)‖

G. ≥ Λ(p, y)Λ(g, y)

H. = Λ(pg, y).

vii. Hence show that 0 > 0.

viii. Abort procedure.

(b) Otherwise do the following:
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i. Show that Λ(p, y)Λ(p, z) > 0.

7. Yield the tuple 〈a, r〉.

Procedure II:115(fri3101200730)

Objective

Choose polynomials g, h, j, p, q, r and a rational
number X such that hq+jr = 1 and p+r = gq. The
objective of the following instructions is to construct
a rational number a and a procedure t(y, z) to show
that Λ(p, y)Λ(r, y) < 0 and Λ(j, y) 6= 0 when two
rational numbers y, z such that ‖y‖ ≤ X, ‖z‖ ≤ X,
‖y − z‖ ≤ a, and Λ(q, y)Λ(q, z) ≤ 0 are chosen.

Implementation

1. Use procedure II:105 on 〈h,X〉 to construct
〈a1, t1〉.

2. Use procedure II:105 on 〈g,X〉 to construct
〈a2, t2〉.

3. Use procedure II:105 on 〈j,X〉 to construct
〈a3, t3〉.

4. Use procedure II:107 on 〈q,X〉 to construct
〈a4, t4〉.

5. Let a = 1
(a1+a2a3)a4+1 .

6. Let t(y, z) be the following procedure:

(a) Show that ‖Λ(h, y)‖ ≤ a1 using procedure
t1.

(b) Show that ‖Λ(g, y)‖ ≤ a2 using procedure
t2.

(c) Show that ‖Λ(j, y)‖ ≤ a3 using procedure
t3.

(d) Show that ‖Λ(q, y)‖ ≤ a4‖z−y‖ ≤ a4a using
procedure t4.

(e) Show that jr = 1−hq given that hq+jr = 1.

(f) Hence show that ‖Λ(j, y)‖‖Λ(r, y)‖

i. = ‖Λ(jr, y)‖

ii. = ‖Λ(1− hq, y)‖

iii. = ‖Λ(1, y)‖ − ‖Λ(h, y)Λ(q, y)‖

iv. ≥ 1− a1a4‖y − z‖

v. = 1− a1a4a

vi. = a2a3a4+1
(a1+a2a3)a4+1

vii. = (a2a3a4 + 1)a

viii. > a2a3a4a

ix. ≥ ‖Λ(q, y)‖‖Λ(g, y)‖‖Λ(j, y)‖

x. ≥ ‖Λ(qg, y)‖‖Λ(j, y)‖.

(g) Hence show that ‖Λ(r, y)‖ > ‖Λ(qg, y)‖ ≥ 0

i. given that Λ(j, y) 6= 0

ii. given that ‖Λ(j, y)‖‖Λ(r, y)‖ > ‖Λ(qg,
y)‖‖Λ(j, y)‖.

(h) Show that p = gq − r given that p+ r = gq.

(i) If Λ(r, y) > 0, then do the following:

i. Show that Λ(p, y)

A. = Λ(gq − r, y)

B. = Λ(gq, y)− Λ(r, y)

C. ≤ ‖Λ(gq, y)‖ − ‖Λ(r, y)‖

D. < 0.

ii. Hence show that Λ(p, y)Λ(r, y) < 0.

(j) Otherwise do the following:

i. Given that Λ(r, y) < 0, show that Λ(p, y)

A. = Λ(gq − r, y)

B. = Λ(gq, y)− Λ(r, y)

C. ≥ −‖Λ(gq, y)‖+ ‖Λ(r, y)‖

D. > 0.

ii. Hence show that Λ(p, y)Λ(r, y) < 0.

7. Yield the tuple 〈a, t〉.

Procedure II:116(fri3101200807)

Objective

Choose polynomials g, h, j, p, q, r and a rational
number X such that hq + jr = 1 and p + r = gq.
The objective of the following instructions is to con-
struct a rational number a and a procedure t(y, z) to
show that Λ(p, y)Λ(r, y) < 0,Λ(p, z)Λ(r, z) < 0,Λ(r,
y)Λ(r, z) > 0, and Λ(p, y)Λ(p, z) > 0 when two ra-
tional numbers y, z such that ‖y‖ ≤ X, ‖z‖ ≤ X,
‖y − z‖ ≤ a, and Λ(q, y)Λ(q, z) ≤ 0 are chosen.
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Implementation

1. Use procedure II:115 on 〈g, h, j, p, q, r,X〉 to
construct 〈a1, t1〉.

2. Use procedure II:114 on 〈j, h, r, q,X〉 to con-
struct 〈a2, t2〉.

3. Show that (j + jg)q + (−j)p = 1 given that
hq + jr = 1 and r = gq − p.

4. Use procedure II:114 on 〈−j, h+jg, p, q,X〉 to
construct 〈a3, t3〉.

5. Let a = min(a1, a2, a3).

6. Let t(y, z) be the following procedure:

(a) Show that Λ(p, y)Λ(r, y) < 0 using pro-
cedure t1.

(b) Show that Λ(r, y)Λ(r, z) > 0 using pro-
cedure t2.

(c) Show that Λ(p, y)Λ(p, z) > 0 using pro-
cedure t3.

(d) Hence show that Λ(p, z)Λ(r, z) = Λ(p,z)
Λ(p,y) ·

Λ(r,z)
Λ(r,y)Λ(p, y)Λ(r, y) < 0.

7. Yield the tuple 〈a, t〉.

Declaration II:46(2.10)

The notation Js(x), where s is a list of polynomials
and x is a rational number, will be used as a short-
hand for the number of changes observed when the
list H(Λ(s, x)) is iterated through in order.

Procedure II:117(fri3101200839)

Objective

Choose polynomials g, h, j, p, q, r and a rational
number X such that hq + jr = 1 and p + r = gq.
The objective of the following instructions is to con-
struct a rational number a and a procedure t(y, z)
to show that J〈p,q,r〉(y) = J〈p,q,r〉(z) = 1 when two
rational numbers y, z such that ‖y‖ ≤ X, ‖z‖ ≤ X,
‖y − z‖ ≤ a, and Λ(q, y)Λ(q, z) ≤ 0 are chosen.

Implementation

1. Use procedure II:116 on 〈g, h, j, p, q, r,X〉 to
construct 〈a, t1〉.

2. Let t(y, z) be the following procedure:

(a) Use procedure t1 to show that:

i. Λ(p, y)Λ(r, y) < 0

ii. Λ(r, y)Λ(r, z) > 0

iii. Λ(p, y)Λ(p, z) > 0

iv. Λ(p, z)Λ(r, z) < 0.

(b) Now show that H(Λ(p, y)) ≤ H(Λ(q, y)) ≤
H(Λ(r, y)) or H(Λ(r, y)) ≤ H(Λ(q, y)) ≤
H(Λ(p, y)) given that Λ(p, y)Λ(r, y) < 0.

(c) Hence using procedure II:26, show that
J〈p,q,r〉(y)

i. = ‖H(Λ(q, y))−H(Λ(p, y))‖+‖H(Λ(r, y))−
H(Λ(q, y))‖

ii. = ‖H(Λ(r, y))−H(Λ(p, y))‖

iii. = 1.

(d) Also show that H(Λ(p, z)) ≤ H(Λ(q, z)) ≤
H(Λ(r, z)) or H(Λ(r, z)) ≤ H(Λ(q, z)) ≤
H(Λ(p, z)) given that Λ(p, z)Λ(r, z) < 0.

(e) Hence using procedure II:26, show that
J〈p,q,r〉(z)

i. = ‖H(Λ(q, z))−H(Λ(p, z))‖+‖H(Λ(r, z))−
H(Λ(q, z))‖

ii. = ‖H(Λ(r, z))−H(Λ(p, z))‖

iii. = 1.

(f) Hence show that J〈p,q,r〉(y) = 1 =
J〈p,q,r〉(z).

3. Yield the tuple 〈a, t〉.

Procedure II:118(fri3101201221)

Objective

Choose a list of polynomials s, a rational number r,
and a natural number k such that k < |s|. The ob-
jective of the following instructions is to show that
Js(r) = Js[0:k+1]

(r) + Js[k:|s|](r).

Implementation

1. Show that Js(r)

(a) =
∑[0:|s|−1]
t ‖H(Λ(st+1, r))−H(Λ(st, r))‖

(b) =
∑[0:k]
t ‖H(Λ(st+1))−H(Λ(st, r))‖

(c) =
∑[k:|s|−1]
t ‖H(Λ(st+1, r))−H(Λ(st, r))‖

(d) = Js[0:k+1]
(r) + Js[k:|s|](r).
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Declaration II:47(fri3101201236)

The phrase ”Sturm chain” will be used as a short-
hand for a non-empty list of polynomials s such that:

1. For i in [0 : |s|], deg(si) = i.

2. For i in [0 : |s|−1], sgn((si)i) = sgn((si+1)i+1)

3. For i in [1 : |s| − 1], si−1 + si+1 mod si = 0.

Procedure II:119(fri3101201247)

Objective

Choose a Sturm chain s, and a natural number k
such that 0 < k ≤ |s|. The objective of the follow-
ing instructions is to show that s[0:k] is also a Sturm
chain.

Implementation

1. For i in [0 : k], show that deg(si) = i.

2. For i in [0 : k − 1], show that sgn((si)i) =
sgn((si+1)i+1).

3. For i in [1 : k − 1], show that si−1 + si+1 mod
si = 0.

4. Hence show that s[0:k] is a Sturm chain.

Procedure II:120(2.20)

Objective

Choose a Sturm chain s and a rational number X.
The objective of the following instructions is to con-
struct a rational number l and a procedure u(c, d)
to show that either 0 < 0 or |Js(d) − Js(c)| =
‖H(Λ(s|s|−1, c)) − H(Λ(s|s|−1, d))‖, when rational
numbers c, d such that |c| ≤ X, |d| ≤ X, and
|d− c| ≤ l are chosen.

Implementation

1. If |s| > 2, then do the following:

(a) Use procedure II:120 on 〈s[0:|s|−2], X〉 to
construct 〈l1, u1〉.

(b) Use procedure II:120 on 〈s[0:|s|−1], X〉 to
construct 〈l2, u2〉.

(c) Use procedure II:113 on 〈s[0:|s|−1]〉 to con-
struct 〈g, h〉 and show that 〈gs|s|−2 +
hs|s|−3 = 1.

(d) Use procedure II:116 on 〈(s|s|−1 +
s|s|−3) div s|s|−2, g, h, s|s|−1, s|s|−2, s|s|−3, X〉
to construct 〈a4, u4〉.

(e) Use procedure II:117 on 〈(s|s|−1 +
s|s|−3) div s|s|−2, g, h, s|s|−1, s|s|−2, s|s|−3, X〉
to construct 〈a5, u5〉.

(f) Let l = min(l1, l2, a4, a5).

2. Otherwise do the following:

(a) Let l = 1.

3. Let u(c, d) be the following procedure:

(a) If |s| = 1, then do the following:

i. Show that ‖Js(d)− Js(c)‖

A. = ‖
∑[0:|s|−1]
r ‖H(Λ(sr+1, d)) − H(Λ(sr,

d))‖−
∑[0:|s|−1]
r ‖H(Λ(sr+1, c))−H(Λ(sr,

c))‖‖

B. = ‖0− 0‖

C. = ‖H((s|s|−1)0)−H((s|s|−1)0)‖

D. = ‖H(Λ(s|s|−1, c))−H(Λ(s|s|−1, d))‖.

(b) Otherwise if |s| = 2, then do the following:

i. Show that ‖Js(d)− Js(c)‖

A. = ‖
∑[0:|s|−1]
r ‖H(Λ(sr+1, d)) − H(Λ(sr,

d))‖−
∑[0:|s|−1]
r ‖H(Λ(sr+1, c))−H(Λ(sr,

c))‖‖

B. = ‖‖H(Λ(s1, d)) − H(Λ(s0, d))‖ −
‖H(Λ(s1, c))−H(Λ(s0, c))‖‖

C. = ‖‖H(Λ(s1, d))−H((s0)0)‖ − ‖H(Λ(s1,
c))−H((s0)0)‖‖

D. = ‖H(Λ(s1, d))−H(Λ(s1, c))‖.

(c) Otherwise if H(Λ(s|s|−2, c)) = H(Λ(s|s|−2,
d)), then do the following:

i. Use procedure u2 to show that
‖Js[0:|s|−1]

(d)− Js[0:|s|−1]
(c)

A. = ‖H(Λ(s|s|−2, c))−H(Λ(s|s|−2, d))‖

B. = 0.

ii. Hence show that ‖Js(d)− Js(c)‖

A. = ‖(Js[0:|s|−1]
(d) + Js[|s|−2:|s|](d)) −

(Js[0:|s|−1]
(c) + Js[|s|−2:|s|](c))‖

B. = ‖Js[|s|−2:|s|](c)− Js[|s|−2:|s|](d)‖
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C. = ‖‖H(Λ(s|s|−1, c)) − H(Λ(s|s|−2, c))‖ −
‖H(Λ(s|s|−1, d))−H(Λ(s|s|−2, d))‖‖

D. = ‖H(Λ(s|s|−1, c))−H(Λ(s|s|−1, d))‖.

(d) Otherwise do the following:

i. Show that H(Λ(s|s|−2, c)) 6= H(Λ(s|s|−2,
d)).

ii. Show that Λ(s|s|−1, c)Λ(s|s|−1, d) > 0 and
Λ(s|s|−3, c)Λ(s|s|−3, d) > 0 using proce-
dure u4.

iii. Hence show that H(Λ(s|s|−1, c)) =
H(Λ(s|s|−1, d)) and H(Λ(s|s|−3, c)) =
H(Λ(s|s|−3, d)).

iv. Use procedure u1 to show that
‖Js[0:|s|−2]

(d)−Js[0:|s|−2]
(c)‖ = ‖H(Λ(s|s|−3,

d)) − H(Λ(s|s|−3, c))‖ = 0 given that
H(Λ(s|s|−3, c)) = H(Λ(s|s|−3, d)).

v. Use procedure u5 to show that
Js[|s|−3:|s|](c) = Js[|s|−3:|s|](d) = 1 given
that Λ(s|s|−2, c)Λ(s|s|−2, d) < 0.

vi. Hence given that H(Λ(s|s|−1, c)) =
H(Λ(s|s|−1, d)) show that ‖Js(d)− Js(c)‖

A. = ‖(Js[0:|s|−2]
(d) + Js[|s|−3:|s|](d)) −

(Js[0:|s|−2]
(c) + Js[|s|−3:|s|](c))‖

B. = ‖0 + (1− 1)‖

C. = 0

D. = ‖H(Λ(s|s|−1, d))−H(Λ(s|s|−1, c))‖.

4. Yield the tuple 〈l, u〉.

Procedure II:121(2.21)

Objective

Choose a polynomial p 6= 0. Choose a rational num-

ber k > 1 + max
[0:deg(p)]
i | pi

pdeg(p)
|. The objective of

the following instructions is to show that sgn(Λ(p,
k)) = sgn(pdeg(p)).

Implementation

1. Let n = deg(p).

2. In reverse order verify the following:

(a) sgn(Λ(p, k)) = sgn(pdeg(p))

(b) sgn(pnk
n+pn−1k

n−1 + · · ·+p0k
0) = sgn(pn)

(c) sgn(kn + pn−1

pn
kn−1 + · · ·+ p0

pn
k0) = 1

(d) kn + pn−1

pn
kn−1 + · · ·+ p0

pn
k0 > 0

(e) kn > −(pn−1

pn
kn−1 + · · ·+ p0

pn
k0)

(f) kn > |pn−1

pn
kn−1 + · · ·+ p0

pn
k0|

(g) kn > |max
[0:n]
i | pipn |(k

n−1 + · · ·+ k0)|

(h) kn > max
[0:n]
i | pipn |

kn−1
k−1

(i) kn+1 − kn > max
[0:n]
i | pipn |(k

n − 1)

(j) kn+1−(1+max
[0:n]
i | pipn |)k

n+max
[0:n]
i | pipn | > 0

(k) k > 1 + max
[0:n]
i | pipn |

Procedure II:122(2.22)

Objective

Choose a polynomial p 6= 0. Choose a rational num-

ber k < −(1 + max
[0:deg(p)]
i | pi

pdeg(p)
|). The objective

of the following instructions is to show that sgn(Λ(p,
k)) = (−1)deg(p) sgn(pdeg(p)).

Implementation

1. Let t = deg(p).

2. Let q = 〈(−1)t−ipi for i ∈ [0 : t+ 1]〉.

3. Verify that k < −(1 + max
[1:t+1]
i | qi

qdeg(q)
|).

4. Therefore verify that −k > 1+max
[0:t]
i | qi

qdeg(q)
|.

5. Execute procedure II:121 on 〈q,−k〉.

6. Hence verify that (−1)t sgn(Λ(p, k))

(a) = sgn((−1)tΛ(p, k))

(b) = sgn((−1)t
∑[0:t+1]
i pik

i)

(c) = sgn(
∑[0:t+1]
i (−1)i(−1)t−ipik

i)

(d) = sgn(
∑[0:t+1]
i qi(−k)i)

(e) = sgn(Λ(q,−k))

(f) = sgn(qt)

(g) = sgn(pt).

7. Therefore verify that sgn(Λ(p, k)) =
(−1)t(−1)t sgn(Λ(p, k)) = (−1)t sgn(pt).
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Procedure II:123(2.23)

Objective

Choose a list of polynomials, s, and rational num-
bers a, l, c such that a < c and l > 0. The objec-
tive of the following instructions is to either show
that 0 < 0 or to construct a list of rational num-
bers, b, such that a = b0 < b1 < · · · < b|b|−1 = c,
bi− bi−1 ≤ l for i in [1 : |b|], and 0 6∈ Λ(s, bi) for i in
[1 : |b| − 1].

Implementation

1. Let e = 〈〈〉, 〈〉, · · · , 〈〉〉.

2. Let f =
∑[0:|s|]
r deg(sr).

3. Let b = 〈a〉.

4. Let d = b1.

5. While d+ l < c, do the following:

(a) Let m = l.

(b) While 0 ∈ Λ(s, d+m) and
∑
|e| ≤ f , do the

following:

i. Let 0 ≤ i < |s| be an integer such that
Λ(si, d+m) = 0.

ii. Append d+m onto ei.

iii. Set m = m
2

(c) If
∑
|e| > f , then do the following:

i. If |ei| ≤ deg(si) for 0 ≤ i < |s|, then do
the following:

A. Verify that
∑
|e| ≤ f .

B. Therefore using (c), verify that
∑
|e| ≤

f <
∑
|e|.

C. Abort procedure.

ii. Otherwise, do the following:

A. Let 0 ≤ i < |s| be an integer such that
|ei| > deg(si).

B. Execute procedure II:104 on si and a
sorted ei.

C. Abort procedure.

(d) Otherwise, do the following:

i. Verify that 0 6∈ Λ(s, d+m).

ii. Append d+m onto b.

iii. Verify that 0 < b|b|−1 − b|b|−2 = m ≤ l.

iv. Set d to d+m.

v. Using (5), verify that d < c.

6. Verify that d < c.

7. Verify that d+ l ≥ c.

8. Therefore verify that 0 < c− d ≤ l.

9. Append c onto b.

10. Yield 〈b〉.

Procedure II:124(2.24)

Objective

Execute procedure II:113 and let 〈s, q, g, h〉 receive.
Let m = |s| − 1. The objective of the follow-
ing instructions is to either show that 0 < 0 or
to construct two lists of rational numbers c, d such
that c0 < d0 ≤ c1 < d1 ≤ · · · ≤ cm−1 < dm−1

and 0 6= sgn(Λ(sm, ci)) = − sgn(Λ(sm, di)) for i in
[0 : m].

Implementation

1. Let U = 1 + max
[0:|s|]
i

(
1 + max

[1:i+1]
j | (si)i−j

(si)i
|
)

2. Using procedure II:121, verify that J(U) = 0.

3. Using procedure II:122, verify that J(−U) =
m.

4. Execute procedure II:120 on the tuple 〈s, q, U〉
and let 〈l, u〉 receive.

5. Execute procedure II:123 on s with endpoints
−U,U and a step size of l and let 〈e〉 receive
the result.

6. Let c = d = 〈〉.

7. For i = 1 to i = |e| − 1:

(a) Execute procedure u on the tuple 〈ei−1, ei〉.

(b) If Jm(ei−1) 6= Jm(ei), then do the following:

i. Append ei−1 to c.

ii. Append ei to d.

iii. Verify that 0 6= |Js(d|d|−1) − Js(c|c|−1)| =
[sgn(Λ(s|s|−1, c|c|−1)) 6= sgn(Λ(s|s|−1,
d|d|−1))].
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iv. Therefore verify that sgn(sm(c|c|−1)) 6=
sgn(sm(d|d|−1)).

v. Therefore verify that |Jm(d|d|−1) −
Jm(c|c|−1)| = 1.

vi. Also verify that 0 6∈ Λ(s, c|c|−1).

vii. Hence verify that Λ(sm, c|c|−1) 6= 0.

viii. Also verify that 0 6∈ Λ(s, d|d|−1).

ix. Hence verify that Λ(sm, d|d|−1) 6= 0.

x. Therefore verify that 0 6=
sgn(sm(c|c|−1)) = − sgn(sm(d|d|−1)).

xi. Also verify that d|d|−2 ≤ c|c|−1 < d|d|−1.

8. If |c| = |d| < m, then do the following:

(a) Verify that each change of Jm(x) over the
course of (7) was by 1.

(b) Verify that Jm(x) changed less than m times
over the course of (12).

(c) Therefore verify that |Jm(U) − Jm(−U)| <
m.

(d) Therefore using (2) and (3), verify that m =
|Jm(U)− Jm(−U)| < m.

(e) Abort procedure.

9. Otherwise, do the following:

(a) Verify that m ≤ |c| = |d|.

(b) Yield the tuple 〈c, d〉.

Procedure II:125(2.26)

Objective

Choose two lists of polynomials s, q and a non-
negative integer k in such a way that, letting m =
|s| − 1,

1. k < m.

2. For k ≤ i ≤ m, deg(si) = i.

3. For k < i < m, si−1 + si+1 = qisi.

Let deg(0) = −1. The objective of the following
instructions is to construct polynomials g, h such
that sk = gsm−1 + hsm, deg(g) = m − 1 − k, and
deg(h) = m− 2− k.

Implementation

1. If k < m− 2, do the following:

(a) Verify that sk + sk+2 = qk+1sk+1.

(b) Therefore verify that sk = qk+1sk+1 − sk+2.

(c) Execute procedure II:125 on s, q, k + 1 and
let the tuple 〈g1, h1〉 receive.

(d) Verify that sk+1 = g1sm−1 + h1sm.

(e) Verify that deg(g1) = m − 1 − (k + 1) =
m− k − 2.

(f) Verify that deg(h1) = m − 2 − (k + 1) =
m− k − 3.

(g) Execute procedure II:125 on s, q, k + 2 and
let the tuple 〈g2, h2〉 receive.

(h) Verify that sk+2 = g2sm−1 + h2sm.

(i) Verify that deg(g2) = m − 1 − (k + 2) =
m− k − 3.

(j) Verify that deg(h2) = m − 2 − (k + 2) =
m− k − 4.

(k) Let g = qk+1g1 − g2.

(l) Verify that deg(g) = max(1 + (m− k− 2),
m− k − 3) = m− 1− k.

(m) Let h = qk+1h1 − h2.

(n) Verify that deg(h) = max(1 + (m− k− 3),
m− k − 4) = m− 2− k.

(o) Verify that sk = qk+1(g1sm−1 + h1sm) −
(g2sm−1 + h2sm) = (qk+1g1 − g2)sm−1 +
(qk+1h1 − h2)sm = gsm−1 + hsm.

2. Otherwise, if k = m− 2 do the following:

(a) Verify that sm−2 + sm = qm−1sm−1.

(b) Let g = qm−1.

(c) Verify that deg(g) = 1 = m− 1− k.

(d) Let h = −1.

(e) Verify that deg(h) = 0 = m− 2− k.

(f) Therefore verify that sk = sm−2 =
qm−1sm−1 − sm = gsm−1 + hsm.

3. Otherwise, if k = m− 1 do the following:

(a) Let g = 1.

(b) Verify that deg(g) = 0 = m− 1− k.
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(c) Let h = 0.

(d) Verify that deg(h) = −1 = m− 2− k.

(e) Verify that sk = sm−1 = gsm−1 + hsm.

4. Yield the tuple 〈g, h〉.
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Part III

Complex Arithmetic
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Chapter 9

Complex Arithmetic

Declaration III:0(3.19)

The phrase ”complex number” will be used as a
shorthand for an ordered pair of rational numbers.

Declaration III:1(3.20)

The phrase ”the real part of a” and the notation
re(a), where a is a complex number, will be used as
a shorthand for the first entry of a.

Declaration III:2(3.21)

The phrase ”the imaginary part of a” and the no-
tation im(a), where a is a complex number, will be
used as a shorthand for the second entry of a.

Declaration III:3(3.22)

The phrase ”a = b”, where a, b are complex num-
bers, will be used as a shorthand for ”re(a) = re(b)
and im(a) = im(b)”.

Procedure III:0(3.68)

Objective

Choose a complex number a. The objective of the
following instructions is to show that a = a.

Implementation

1. Show that re(a) = re(a).

2. Show that im(a) = im(a).

3. Hence show that a = a.

Procedure III:1(3.69)

Objective

Choose two complex numbers a, b such that a = b.
The objective of the following instructions is to show
that b = a.

Implementation

1. Show that re(b) = re(a) given that re(a) =
re(b).

2. Show that im(b) = im(a) given that im(a) =
im(b).

3. Hence show that b = a.

Procedure III:2(3.70)

Objective

Choose three complex numbers a, b, c such that a =
b and b = c. The objective of the following instruc-
tions is to show that a = c.

Implementation

1. Show that re(a) = re(c)

(a) given that re(a) = re(b)

(b) and re(b) = re(c).

2. Show that im(a) = im(c)

(a) given that im(a) = im(b)

(b) and im(b) = im(c).

3. Hence verify that a = c.
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Declaration III:4(3.23)

The notation a+b, where a, b are complex numbers,
will be used as a shorthand for the pair 〈re(a)+re(b),
im(a) + im(b)〉.

Procedure III:3(3.71)

Objective

Choose two complex numbers a, b, c, d such that
a = c and b = d. The objective of the following
instructions is to show that a+ b = c+ d.

Implementation

1. Using declaration III:3, show that

(a) re(a) = re(c)

(b) im(a) = im(c)

(c) re(b) = re(d)

(d) im(b) = im(d).

2. Hence show that a+ b

(a) = 〈re(a), im(a)〉+ 〈re(b), im(b)〉

(b) = 〈re(a) + re(b), im(a) + im(b)〉

(c) = 〈re(c) + re(d), im(c) + im(d)〉

(d) = 〈re(c), im(c)〉+ 〈re(d), im(d)〉

(e) = c+ d.

Procedure III:4(3.72)

Objective

Choose three complex numbers a, b, c. The objec-
tive of the following instructions is to show that
(a+ b) + c = a+ (b+ c).

Implementation

1. Show that (a+ b) + c

(a) = 〈re(a)+re(b), im(a)+im(b)〉+〈re(c), im(c)〉

(b) = 〈(re(a) + re(b)) + re(c), (im(a) + im(b)) +
im(c)〉

(c) = 〈re(a) + (re(b) + re(c)), im(a) + (im(b) +
im(c))〉

(d) = 〈re(a), im(a)〉+〈re(b)+re(c), im(b)+im(c)〉

(e) = a+ (b+ c).

Procedure III:5(3.73)

Objective

Choose two complex numbers a, b. The objective of
the following instructions is to show that a + b =
b+ a.

Implementation

1. Show that a+ b

(a) = 〈re(a) + re(b), im(a) + im(b)〉

(b) = 〈re(b) + re(a), im(b) + im(a)〉

(c) = b+ a.

Declaration III:5(3.24)

The notation a, where a is a rational number, will
contextually be used as a shorthand for the pair 〈a,
0〉.

Procedure III:6(3.74)

Objective

Choose a complex number a. The objective of the
following instructions is to show that 0 + a = a.

Implementation

1. Show that 0 + a

(a) = 〈0, 0〉+ 〈re(a), im(a)〉

(b) = 〈0 + re(a), 0 + im(a)〉

(c) = 〈re(a), im(a)〉

(d) = a.

Declaration III:6(3.25)

The notation −a, where a is a complex number,
will be used as a shorthand for the pair 〈− re(a),
− im(a)〉.

Procedure III:7(3.75)

Objective

Choose a complex number a. The objective of the
following instructions is to show that −a+ a = 0.
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Implementation

1. Show that −a+ a

(a) = (−a) + a

(b) = 〈− re(a),− im(a)〉+ 〈re(a), im(a)〉

(c) = 〈− re(a) + re(a),− im(a) + im(a)〉

(d) = 〈0, 0〉

(e) = 0.

Declaration III:7(3.26)

The notation ab, where a, b are complex numbers,
will be used as a shorthand for the pair 〈re(a) re(b)−
im(a) im(b), re(a) im(b) + im(a) re(b)〉.

Procedure III:8(3.76)

Objective

Choose four complex numbers a, b, c, d such that
a = c and b = d. The objective of the following
instructions is to show that ab = cd.

Implementation

1. Using declaration III:3, show that

(a) re(a) = re(c)

(b) im(a) = im(c)

(c) re(b) = re(d)

(d) im(b) = im(d).

2. Hence show that ab

(a) = 〈re(a), im(a)〉〈re(b), im(b)〉

(b) = 〈re(a) re(b) − im(a) im(b), re(a) im(b) +
im(a) re(b)〉

(c) = 〈re(c) re(d) − im(c) im(d), re(c) im(d) +
im(c) re(d)〉

(d) = 〈re(c), im(c)〉〈re(d), im(d)〉

(e) = cd.

Procedure III:9(3.77)

Objective

Choose three complex numbers a, b, c. The objec-
tive of the following instructions is to show that
(ab)c = a(bc).

Implementation

1. Show that (ab)c

(a) = 〈re(a) re(b) − im(a) im(b), re(a) im(b) +
im(a) re(b)〉〈re(c), im(c)〉

(b) = 〈(re(a) re(b) − im(a) im(b)) re(c) −
(re(a) im(b)+im(a) re(b)) im(c), (re(a) re(b)−
im(a) im(b)) im(c) + (re(a) im(b) +
im(a) re(b)) re(c)〉

(c) = 〈re(a)(re(b) re(c) − im(b) im(c)) −
im(a)(re(b) im(c)+im(b) re(c)), re(a)(re(b) im(c)+
im(b) re(c))+im(a)(re(b) re(c)−im(b) im(c))〉

(d) = 〈re(a), im(a)〉〈re(b) re(c) − im(b) im(c),
re(b) im(c) + im(b) re(c)〉

(e) = a(bc).

Procedure III:10(3.78)

Objective

Choose two complex numbers a, b. The objective of
the following instructions is to show that ab = ba.

Implementation

1. Show that ab

(a) = 〈re(a) re(b) − im(a) im(b), re(a) im(b) +
im(a) re(b)〉

(b) = 〈re(b) re(a) − im(b) im(a), re(b) im(a) +
im(b) re(a)〉

(c) = ba.

Procedure III:11(3.79)

Objective

Choose a complex number a. The objective of the
following instructions is to show that 1a = a.

Implementation

1. Show that 1a

(a) = 〈1, 0〉〈re(a), im(a)〉

(b) = 〈1 re(a)− 0 im(a), 1 im(a) + 0 re(a)〉

(c) = 〈re(a), im(a)〉

(d) = a.
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Procedure III:12(3.82)

Objective

Choose three complex numbers a, b, c. The objec-
tive of the following instructions is to show that
a(b+ c) = ab+ ac.

Implementation

1. a(b+ c)

(a) = 〈re(a), im(a)〉〈re(b) + re(c), im(b) + im(c)〉

(b) = 〈re(a)(re(b)+re(c))−im(a)(im(b)+im(c)),
re(a)(im(b) + im(c)) + im(a)(re(b) + re(c))〉

(c) = 〈(re(a) re(b)− im(a) im(b))+(re(a) re(c)−
im(a) im(c)), (re(a) im(b) + im(a) re(b)) +
(re(a) im(c) + im(a) re(c))〉

(d) = 〈re(a) re(b) − im(a) im(b), re(a) im(b) +
im(a) re(b)〉 + 〈re(a) re(c) − im(a) im(c),
re(a) im(c) + im(a) re(c)〉

(e) = ab+ ac.

Declaration III:8(3.02)

The notation (a)−, where a is a complex number,
will be used as a shorthand for 〈re(a),− im(a)〉.

Procedure III:13(3.00)

Objective

Choose two complex numbers a, b. The objective of
the following instructions is to show that (a+ b)− =
(a)− + (b)−.

Implementation

1. Show that (a+ b)−

(a) = 〈re(a+ b),− im(a+ b)〉

(b) = 〈re(a) + re(b),− im(a)− im(b)〉

(c) = (a)− + (b)−.

Procedure III:14(3.01)

Objective

Choose two complex numbers a, b. The objective of
the following instructions is to show that (ab)− =
(a)−(b)−.

Implementation

1. Show that (ab)−

(a) = 〈re(ab),− im(ab)〉

(b) = 〈re(a) re(b)− im(a) im(b)),− re(a) im(b)−
im(a) re(b)〉

(c) = 〈re(a),− im(a)〉〈re(b),− im(b)〉

(d) = (a)−(b)−.

Declaration III:9(3.03)

The notation ‖a‖2, where a is a complex number,
will be used as a shorthand for re(a)2 + im(a)2.

Procedure III:15(3.02)

Objective

Choose a complex number a. The objective of the
following instructions is to show that a(a)− = ‖a‖2.

Implementation

1. Show that a(a)− = ‖a‖2.

Procedure III:16(3.04)

Objective

Choose a list of complex numbers a. The objec-
tive of the following instructions is to show that

‖
∑[0:|a|]
r ar‖2 ≤ |a|

∑[0:|a|]
r ‖ar‖2.

Implementation

1. Show that ‖
∑[0:|a|]
r ar‖2

(a) =
∑[0:|a|]
r

∑[0:|a|]
k ar(ak)−

(b) =
∑[0:|a|]
r ‖ar‖2+2

∑[0:|a|]
r

∑[r+1:|a|]
k (re(ar) re(ak)+

im(ar) im(ak))

(c) =
∑[0:|a|]
r ‖ar‖2 +

∑[0:|a|]
r

∑[r+1:|a|]
k (re(ar)

2−
(re(ar) − re(ak))2 + re(ak)2 + im(ar)

2 −
(im(ar)− im(ak))2 + im(ak)2)

(d) ≤
∑[0:|a|]
r ‖ar‖2 +

∑[0:|a|]
r

∑[r+1:|a|]
k (re(ar)

2 +
re(ak)2 + im(ar)

2 + im(ak)2)

(e) =
∑[0:|a|]
r ‖ar‖2 +

∑[0:|a|]
r

∑[r+1:|a|]
k (‖ar‖2 +

‖ak‖2)

(f) =
∑[0:|a|]
r ‖ar‖2+ 1

2

∑[0:|a|]
r

∑[0:r]_[r+1:|a|]
k (‖ar‖2+

‖ak‖2)
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(g) =
∑[0:|a|]
r ‖ar‖2 + 1

2 (
∑[0:|a|]
r (|a| − 1)‖ar‖2 +∑[0:|a|]

k (|a| − 1)‖ak‖2)

(h) =
∑[0:|a|]
r ‖ar‖2 +

∑[0:|a|]
r (|a| − 1)‖ar‖2

(i) = |a|
∑[0:|a|]
r ‖ar‖2

Procedure III:17(3.05)

Objective

Choose a list of complex numbers a. The objec-
tive of the following instructions is to show that
‖a0‖2
|a| −

∑[1:|a|]
r ‖ar‖2 ≤ ‖a0 −

∑[1:|a|]
r ar‖2.

Implementation

1. Using procedure III:16, show that ‖a0‖2

(a) = ‖
∑[1:|a|]
r ar + (a0 −

∑[1:|a|]
r ar)‖2

(b) ≤ |a|
∑[1:|a|]
r ‖ar‖2 + |a|‖a0 −

∑[1:|a|]
r ar‖2

2. Therefore show that ‖a0‖
2

|a| −
∑[1:|a|]
r ‖ar‖2 ≤

‖a0 −
∑[1:|a|]
r ar‖2.

Procedure III:18(3.04aa)

Objective

Choose a list of complex numbers a and a list of ra-
tional numbers b such that |a| = |b| and ‖ai‖2 ≤ bi2
for each i ∈ [0 : |a|]. The objective of the fol-

lowing instructions is to show that ‖
∑[0:|a|]
r ar‖2 ≤

(
∑[0:|b|]
r br)

2.

Implementation

1. If |a| = 0, then do the following:

(a) Show that ‖
∑[0:|a|]
i ai‖2 = ‖0‖2 =

(
∑[0:|b|]
i bi)

2.

2. Otherwise do the following:

(a) Show that |a| > 0.

(b) Show that ‖
∑[1:|a|]
i ai‖2 ≤ (

∑[1:|b|]
i bi)

2 us-
ing procedure III:18 on a[1:|a|] and b[1:|b|].

(c) Show that re((a0)−
∑[1:|a|]
i ai)

2

i. ≤ ‖(a0)−
∑[1:|a|]
i ai‖2

ii. = ‖(a0)−‖2‖
∑[1:|a|]
i ai‖2

iii. ≤ b02(
∑[1:|a|]
i bi)

2.

(d) Hence show that ‖
∑[0:|a|]
i ai‖2

i. = (a0 +
∑[1:|a|]
i ai)((a0 +

∑[1:|a|]
i ai)

−)

ii. = ‖a0‖2 + a0(
∑[1:|a|]
i ai)

− +

(a0)−
∑[1:|a|]
i ai + ‖

∑[1:|a|]
i ai‖2

iii. ≤ b0
2 + ((a0)−

∑[1:|a|]
i ai)

− +

(a0)−
∑[1:|a|]
i ai + (

∑[1:|a|]
i bi)

2

iv. = b0
2+2 re((a0)−

∑[1:|a|]
i ai)+(

∑[1:|a|]
i bi)

2

v. ≤ b02 + 2b0
∑[1:|a|]
i bi + (

∑[1:|a|]
i bi)

2

vi. = (b0 +
∑[1:|a|]
i bi)

2

vii. = (
∑[0:|a|]
i bi)

2.

Procedure III:19(sat1708191238)

Objective

Choose two complex numbers a, d and two rational
numbers b, c such that ‖a‖2 ≤ b2 < c2 ≤ ‖d‖2. The
objective of the following instructions is to show that
‖d− a‖2 ≥ (c− b)2.

Implementation

1. Show that re(ad )2

(a) = re(a(d)−

‖d‖2 )2 = re(a(d)−)2

‖d‖4 ≤ ‖a(d)−‖2
‖d‖4

(b) = ‖a‖2‖d‖2
‖d‖4 = ‖a‖2

‖d‖2 ≤
b2

c2 = ( bc )
2.

2. Hence show that re(ad ) ≤ b
c < 1.

3. Hence show that ‖d− a‖2

(a) = ‖d−ad ‖
2‖d‖2

(b) = (re(1− a
d )2 + im(1− a

d )2)‖d‖2

(c) ≥ re(1− a
d )2‖d‖2

(d) = (1− re(ad ))2‖d‖2

(e) ≥ (1− b
c )

2c2

(f) = (c− b)2.

Declaration III:10(3.27)

The notation 1
a , where a is a complex number, will

be used as a shorthand for the pair 1
‖a‖2 (a)−.
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Procedure III:20(3.81)

Objective

Choose a complex number a such that a 6= 0. The
objective of the following instructions is to show that
1
aa = 1.

Implementation

1. Show that re(a) 6= re(0) = 0 or im(a) 6=
im(0) = 0 using declaration III:3.

2. Hence show that ‖a‖2 = re(a)2 + im(a)2 > 0.

3. Hence show that 1
aa

(a) = ( 1
‖a‖2 (a)−)a

(b) = 1
‖a‖2 ((a)−a)

(c) = 1
‖a‖2 ‖a‖

2

(d) = 1.

Declaration III:11(3.28)

The notation i will be used as a shorthand for 〈0,
1〉.

Procedure III:21(3.03)

Objective

Choose an integer a. The objective of the follow-
ing instructions is to show that i4a = 1, i4a+1 = i,
i4a+2 = −1, and i4a+3 = −i.

Implementation

1. Show that i2 = −1.

2. Hence show that i4 = (−1)2 = 1.

3. Hence show that

(a) i4a = (i4)a = 1a = 1

(b) i4a+1 = i4ai = 1i = i

(c) i4a+2 = i4a+1i = i2 = −1

(d) i4a+3 = i4a+2i = (−1)i = −i.

Procedure III:22(sun2107190636)

Objective

Choose a non-negative integer a and a complex num-
ber x. The objective of the following instructions is

to show that (1 + x)a =
∑[0:a+1]
r

(
a
r

)
xr.

Implementation

Instructions are analogous to those of procedure
I:84.

Declaration III:12(mon1908191749)

The notation a ≡ b (err c1) (err c2) · · · (err cn)
will be used as a shorthand for ‖b − a‖2 ≤ ‖c1‖2 ≤
‖c2‖2 ≤ · · · ≤ ‖cn‖2.

Procedure III:23(mon1908191916)

Objective

Choose four complex numbers a, b, c, d in such a way
that a ≡ b (err c) and ‖c‖2 ≤ ‖d‖2. The objec-
tive of the following instructions is to show that
a ≡ b (err c) (err d).

Implementation

1. Show that ‖b− a‖ ≤ ‖c‖2 ≤ ‖d‖2.

2. Hence show that a ≡ b (err c) (err d) using
declaration III:12.

Procedure III:24(mon1908191825)

Objective

Choose three complex numbers a, b, c and two non-
negative rational numbers d, e in such a way that
a ≡ b (err d) and b ≡ c (err e). The objec-
tive of the following instructions is to show that
a ≡ c (err d+ e).

Implementation

1. Show that ‖b− a‖2 ≤ ‖d‖2 = d2.

2. Show that ‖c− b‖2 ≤ ‖e‖2 = e2.

3. Hence show that ‖c − a‖2 = ‖(c − b) + (b −
a)‖2 ≤ (e+ d)2 using procedure III:18.

4. Hence show that a ≡ c (err e + d) using
declaration III:12.
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Procedure III:25(mon1908191839)

Objective

Choose four complex numbers a, b, c, d and two non-
negative rational numbers e, f in such a way that
a ≡ b (err e) and c ≡ d (err f). The objec-
tive of the following instructions is to show that
a+ c ≡ b+ d (err e+ f).

Implementation

1. Show that ‖b− a‖2 ≤ ‖e‖2 = e2.

2. Show that ‖d− c‖2 ≤ ‖f‖2 = f2.

3. Hence show that ‖(b+ d)− (a+ c)‖2 = ‖(b−
a)+(d−c)‖2 ≤ (e+f)2 using procedure III:18.

4. Hence show that a + c ≡ b + d (err e + f)
using declaration III:12.

Procedure III:26(mon1908191849)

Objective

Choose three complex numbers a, b, c in such a way
that a ≡ b (err c). The objective of the following
instructions is to show that −a ≡ −b (err c).

Implementation

1. Show that ‖(−b)− (−a)‖2 = ‖b− a‖ ≤ ‖c‖2.

2. Hence show that −a ≡ −b (err c) using
declaration III:12.

Procedure III:27(mon1908191857)

Objective

Choose four complex numbers a, b, c, d in such a way
that a ≡ b (err c). The objective of the following in-
structions is to show that ad ≡ bd (err cd).

Implementation

1. Show that ‖b− a‖2 ≤ ‖c‖2.

2. Hence show that ‖bd− ad‖2 ≤ ‖cd‖2.

3. Hence show that ad ≡ bd (err cd) using
declaration III:12.

Procedure III:28(mon1908191905)

Objective

Choose two complex numbers a, b, c in such a way
that a 6= 0, b 6= 0, and a ≡ b (err c). The ob-
jective of the following instructions is to show that
1
a ≡

1
b (err c

ab ).

Implementation

1. Show that ‖b− a‖ ≤ ‖c‖2.

2. Hence show that ‖ 1
b −

1
a‖

2 = ‖a−bba ‖
2 ≤ ‖ cba‖

2.

3. Hence show that 1
a ≡

1
b (err c

ab ) using dec-
laration III:12.
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Chapter 10

Exponential and Trigonometric
Functions

Declaration III:13(3.05)

The notation expn(a), where a is a complex number,
will be used as a shorthand for (1 + a

n )n.

Procedure III:29(3.08)

Objective

Choose a rational number a and a positive integer
n such that −n < a < 1. The objective of the fol-
lowing instructions is to show that expn(a) ≤ 1

1−a .

Implementation

1. Using procedure II:30, show that expn(a)

(a) = (n+a
n )n

(b) = ( n
n+a )−n

(c) = 1
(1+ −a

n+a )n

(d) ≤ 1
1+−an

n+a

(e) ≤ 1
1−a .

Procedure III:30(3.09)

Objective

Choose a rational number a and a positive integer
n such that a > −n. The objective of the following

instructions is to show that
expn+1(a)

expn(a) ≥ 1.

Implementation

1. Using procedure II:30, show that
expn+1(a)

expn(a)

(a) =
( n+1+a

n+1 )n

( n+a
n )n

(1 + a
n+1 )

(b) = ( (n+1+a)n
(n+1)(n+a) )n(1 + a

n+1 )

(c) = ( n2+n+na
n2+an+n+a )n(1 + a

n+1 )

(d) = (1− a
(n+1)(n+a) )n(1 + a

n+1 )

(e) ≥ (1− an
(n+1)(n+a) )(1 + a

n+1 )

(f) = 1 + a(n+a)
(n+1)(n+a) −

an
(n+1)(n+a) −

a2n
(n+1)2(n+a)

(g) = 1 + a2

(n+1)(n+a) −
a2n

(n+1)2(n+a)

(h) = 1 + a2

(n+1)2(n+a)

(i) ≥ 1

Procedure III:31(3.10)

Objective

Choose a rational number X ≥ 0. The objective
of the following instructions is to construct positive
rational numbers a, b such that a > 1, and a pro-
cedure, p(x, r, n), to show that (1 + x

n )r ≤ a2 when
given a rational number x and a non-negative inte-
gers r, n such that r ≤ n, n ≥ b and x2 ≤ X2 are
chosen.
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Implementation

1. Let a = 2dXe.

2. Let b = X.

3. Let p(x, r, n) be the following procedure:

(a) Show that 0 ≤ 1 + x
n ≤ 2

i. given that −1 ≤ x
n ≤ 1

ii. given that −X ≤ x ≤ X

iii. given that x2 ≤ X2.

(b) Hence using procedure III:29 and procedure
III:30, show that (1 + x

n )r

i. ≤ (1 + X
n )r

ii. ≤ expn(X)

iii. ≤ (1 + X
2dXen )2dXen

iv. = ((1 +
X

2dXe
n )n)2dXe

v. = expn( X
2dXe )

2dXe

vi. ≤ ( 1
1− X

2dXe
)2dXe

vii. ≤ 22dXe

viii. = a2.

4. Yield the tuple 〈a, b, p〉.

Procedure III:32(3.11)

Objective

Choose a rational number X ≤ 0. The objective of
the following instructions is to construct two ratio-
nal numbers a > 0, b, and a procedure p(x, r, n) to
show that (1 + x

n )r ≥ a2 when a rational number x
and non-negative integers r, n such that X ≤ x ≤ 0,
r ≤ n, and n > b are chosen.

Implementation

1. Use procedure III:31 on 〈−2X〉 to construct
〈c, d, q〉.

2. Let a = c−1.

3. Let b = max(−2X, d).

4. Let p(x, r, n) be the following procedure:

(a) Show that 0 ≤ −2x ≤ −2X

i. given that 2X ≤ 2x ≤ 0

ii. given that X ≤ x ≤ 0.

(b) Show that (1 + −2x
n )r ≤ c2 using procedure

q.

(c) Show that n
2 ≤ n+ x < n

i. given that −n2 ≤ x ≤ 0

ii. given that n > b ≥ −2X ≥ −2x ≥ 0.

(d) Hence show that (1 + x
n )r

i. = (n+x
n )r

ii. = ( n
n+x )−r

iii. = (1− x
n+x )−r

iv. ≥ (1− x
1
2n

)−r

v. = (1− 2x
n )−r

vi. = ((1 + −2x
n )r)−1

vii. ≥ (c2)−1

viii. = a2.

5. Yield the tuple 〈a, b, p〉.

Procedure III:33(3.12)

Objective

Choose a rational number X ≥ 0. The objective of
the following instructions is to construct two ratio-
nal numbers a > 0, b, and a procedure p(x, r, n) to
show that (1 + x

n )r ≥ a2 when a rational number x
and non-negative integers r, n such that x2 ≤ X2,
r ≤ n, and n > b are chosen.

Implementation

1. Execute procedure III:32 on 〈−X〉 and let 〈c,
b, q〉 receive.

2. Let a = min(1, c).

3. Let p(x, r, n) be the following procedure:

(a) If x < 0, then do the following:

i. Show that −X ≤ x ≤ 0 given that x2 ≤
X2.

ii. Hence show that (1 + x
n )r ≥ c2 ≥ a2

using procedure q.

(b) Otherwise do the following:

i. Verify that x ≥ 0.
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ii. Show that (1 + x
n )r ≥ 1 + rx

n ≥ 1 ≥ a2

using procedure II:30.

4. Yield the tuple 〈a, b, p〉.

Procedure III:34(3.13)

Objective

Choose a rational number X ≥ 0. The objective
of the following instructions is to construct positive
rational numbers a, b such that a > 1, and a proce-
dure, p(x, r, n), to show that ‖(1 + x

n )r‖2 ≤ a2 when
a complex number x and non-negative integers r, n
such that ‖x‖2 ≤ X2, r ≤ n, and n > b are chosen.

Implementation

1. Let c = 2X +X2.

2. Execute procedure III:31 on 〈c〉 and let 〈a, b,
q〉.

3. Let p(x, r, n) be the following procedure:

(a) Let y = 2|re(x)|+ ‖x‖2.

(b) Show that |y| = y ≤ 2X +X2 = c

i. given that |re(x)| ≤ X

ii. given that |re(x)|2 ≤ ‖x‖2 ≤ X2.

(c) Hence show that (1 + y
n )r ≤ a2 using proce-

dure q.

(d) Now using procedure III:15 show that ‖(1 +
x
n )r‖2

i. = (1 + x
n )r((1 + x

n )r)−

ii. = (1 + x
n )r(1 + (x)−

n )r

iii. = (1 + 2 re(x)
n + ‖x‖2

n2 )r

iv. ≤ (1 + 2|re(x)|
n + ‖x‖2

n2 )r

v. ≤ (1 + 2|re(x)|+‖x‖2
n )r

vi. = (1 + y
n )r

vii. ≤ a2.

4. Yield the tuple 〈a, b, p〉.

Procedure III:35(3.14)

Objective

Choose a rational number X ≥ 0. The objective of
the following instructions is to construct two ratio-
nal numbers a, b and a procedure, p(x, r, n), to show
that ‖(1 + x

n )r‖2 ≥ a2 when a rational number x
and non-negative integers r, n such that ‖x‖2 ≤ X2,
r ≤ n and n > b are chosen.

Implementation

1. Let c = 2X +X2.

2. Execute procedure III:33 on 〈c〉 and let 〈a, d,
q〉 receive.

3. Let b = max(c, d).

4. Let p(x, r, n) be the following procedure:

(a) Let y = 2|re(x)|+ ‖x‖2.

(b) Verify that |−y| = y ≤ 2X +X2 = c.

(c) Hence show that (1 + −y
n )r ≥ a2 using pro-

cedure q.

(d) Also, show that n > b ≥ c ≥ y.

(e) Hence show that ‖(1 + x
n )r‖2

i. = (1 + x
n )r((1 + x

n )r)−

ii. = (1 + x
n )r(1 + (x)−

n )r

iii. = (1 + 2 re(x)
n + ‖x‖2

n2 )r

iv. ≥ (1− 2|re(x)|
n − ‖x‖

2

n2 )r

v. ≥ (1− 2|re(x)|+‖x‖2
n )r

vi. = (1 + −y
n )r

vii. ≥ a2.

5. Yield the tuple 〈a, b, p〉.

Procedure III:36(3.15)

Objective

Choose a rational number X ≥ 0. The ob-
jective of the following instructions is to con-
struct rational numbers a, b such that a > 0,
and a procedure, p, to show that expn(x + y) ≡
expn(x) expn(y) (err axy

n ) (err aX2

n ) when two com-
plex numbers x, y and a positive integer n > b such
that ‖x‖2 ≤ X2, ‖y‖2 ≤ X2 are chosen.
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Implementation

1. Execute procedure III:34 on 〈2X〉 and let 〈c,
b, q〉 receive.

2. Let a = c3.

3. Let p(x, y, n) be the following procedure:

(a) Using procedure q, show that expn(x+ y) ≡
expn(x) expn(y)

i. (err expn(x) expn(y)− expn(x+ y))

ii. (err (1 + x
n )n(1 + y

n )n − (1 + x+y
n )n)

iii. (err (1 + x+y
n + xy

n2 )n − (1 + x+y
n )n)

iv. (err xy
n2

∑[0:n]
r (1 + x+y

n + xy
n2 )r(1 +

x+y
n )n−1−r)

v. (err xy
n2

∑[0:n]
r (1 + x

n )r(1 + y
n )r(1 +

x+y
n )n−1−r)

vi. (err xy
n2

∑[0:n]
r c3)

vii. (err axy
n )

viii. (err aX2

n ).

4. Yield the tuple 〈a, b, p〉.

Procedure III:37(thu2507191359)

Objective

Choose a rational number X ≥ 0. The objective
of the following instructions is to construct rational
numbers a, b such that a > 0 and a procedure p(x,

y, n) to show that expn(x − y) ≡ expn(x)
expn(y) (err a

n )

when two complex numbers x, y and a positive inte-
ger n such that ‖x‖2 ≤ X, ‖y‖2 ≤ X, and n > b are
chosen.

Implementation

1. Execute procedure III:36 on 〈X〉 and let 〈c, d,
q〉 receive.

2. Execute procedure III:35 on 〈X〉 and let 〈e, f,
r〉 receive.

3. Execute procedure III:34 on 〈X〉 and let 〈g, h,
t〉 receive.

4. Let b = max(d, f, h).

5. Let a = c(1 + g
e )X2.

6. Let p(x, y, n) be the following procedure:

(a) Using procedures q, r, t, show that expn(x−
y)

i. ≡ expn(x) expn(−y) (err cX2

n )

ii. = expn(x) expn(y) expn(−y)
expn(y)

iii. ≡ expn(x) expn(0)
expn(y) (err g

e ·
cX2

n )

iv. = expn(x)
expn(y) .

(b) Hence show that expn(x − y) ≡
expn(x)
expn(y) (err cX2

n + gcX2

en ) (err a
n ).

7. Yield the tuple 〈a, b, p〉.

Procedure III:38(3.16)

Objective

Choose a rational number X ≥ 0. The objective
of the following instructions is to construct positive
rational numbers a, b and a procedure, p(x, k, n), to
show that expn(kx) ≡ expn(x)k (err ak

n ) when a
complex number x, and non-negative integers k, n
such that n > b and ‖kx‖2 ≤ X2 are chosen.

Implementation

1. Execute procedure III:34 on 〈X〉 and let 〈c, d,
q〉 receive.

2. Execute procedure III:36 on 〈X〉 and let 〈e, f,
t〉 receive.

3. Let a = ecX2

4. Let b = max(d, f).

5. Let p(x, k, n) be the following procedure:

(a) If k > 0, then for r ∈ [1 : k] do the following:

i. Show that ‖xr‖2 ≤ ‖kx‖2 ≤ X2.

ii. Hence show that ‖expnr(xr)‖2 ≤ c2 using
procedure q.

iii. Hence show that ‖expn(x)r‖2 = ‖(1 +
x
n )nr‖2 = ‖(1+ xr

nr )nr‖2 = ‖expnr(xr)‖2 ≤
c2

(b) Hence using procedure t, show that
expn(kx)

i. = expn(x)0 expn(kx)

ii. ≡ expn(x)1 expn((k − 1)x) (err ceX2

n )
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iii. ≡ expn(x)2 expn((k − 2)x) (err ceX2

n )

iv.
...

v. ≡ expn(x)k expn((k − k)x) (err ceX2

n )

vi. = expn(x)k.

(c) Hence show that expn(kx) ≡
expn(x)k (err kceX2

n ) (err ak
n ).

6. Yield the tuple 〈a, b, p〉.

Procedure III:39(thu2507191307)

Objective

Choose a rational number X ≥ 0. The objective
of the following instructions is to construct positive
rational numbers a, b, and a procedure p(x, y, n) to
show that expn(y) ≡ expn(x) (err a(x−y)) when two
complex numbers x, y and a positive integer n > b
such that ‖x‖2 ≤ X and ‖y‖2 ≤ X are chosen.

Implementation

1. Execute procedure III:34 on 〈X〉 and let 〈c, b,
q〉 receive.

2. Let a = c2.

3. Let p(x, y, n) be the following procedure:

(a) Using procedure q, show that expn(x) ≡
expn(y)

i. (err expn(y)− expn(x))

ii. (err (1 + y
n )n − (1 + x

n )n)

iii. (err ( yn −
x
n )
∑[0:n]
r (1 + y

n )r(1 + x
n )n−1−r)

iv. (err (y − x)( 1
n

∑[0:n]
r c2))

v. (err a(y − x)).

4. Yield the tuple 〈a, b, p〉.

Procedure III:40(3.21)

Objective

Choose a rational number X ≥ 0. The objective
of the following instructions is to construct two ra-

tional numbers a,N , and a procedure, p(x, n), to

show that expn(x) ≡
∑[0:n+1]
r

xr

r! (err a
n ) when a

complex number x and an integer n > N such that
‖x‖2 ≤ X2 are chosen.

Implementation

1. Let N = bXc+ 1.

2. Let a = X2(
∑[0:N ]
r

Xr

r! + XN

N ! ·
1

1−X
N

).

3. Let p(x, n) be the following procedure:

(a) Using procedure II:29, procedure III:16, pro-
cedure II:28, and procedure II:30, show that

expn(x) ≡
∑[0:n+1]
r

xr

r!

i. (err
∑[0:n+1]
r

xr

r! − expn(x))

ii. (err
∑[0:n+1]
r

xr

r! −
∑[0:n+1]
r

nr

r! ·
xr

nr )

iii. (err
∑[1:n+1]
r (1− nr

nr )x
r

r! )

iv. (err
∑[1:n+1]
r (1− nr

nr )X
r

r! )

v. (err
∑[2:n+1]
r (1− (n−r+1)r

nr )X
r

r! )

vi. (err
∑[2:n+1]
r (1− (1− r−1

n )r)X
r

r! )

vii. (err
∑[2:n+1]
r (1− (1− (r−1)r

n ))X
r

r! )

viii. (err
∑[2:n+1]
r

(r−1)r
n

Xr

r! )

ix. (err 1
n

∑[2:n+1]
r

Xr

(r−2)! )

x. (err X2

n

∑[0:n−1]
r

Xr

r! )

xi. (err X2

n (
∑[0:N ]
r

Xr

r! +
∑[N :n−1]
r

Xr

r! ))

xii. (err X2

n (
∑[0:N ]
r

Xr

r! +
∑[N :n−1]
r

Xr

N !Nr−N ))

xiii. (err X2

n (
∑[0:N ]
r

Xr

r! +XN

N !

∑[N :n−1]
r

Xr−N

Nr−N ))

xiv. (err X2

n (
∑[0:N ]
r

Xr

r! +XN

N !

∑[0:n−N−1]
r

Xr

Nr ))

xv. (err X2

n (
∑[0:N ]
r

Xr

r! + XN

N ! ·
1

1−X
N

))

xvi. (err a
n ).

4. Yield the tuple 〈a,N, p〉.
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Figure III:0

1

i

(1 + 4i
10 )0

(1 + 4i
10 )1

(1 + 4i
10 )2

(1 + 4i
10 )3

(1 + 4i
10 )4(1 + 4i

10 )5

(1 + 4i
10 )6

(1 + 4i
10 )7

(1 + 4i
10 )8

(1 + 4i
10 )9

(1 + 4i
10 )10

A plot of the list of complex numbers
(1 + 4i

10 )[0:11]. Notice that each mul-
tiplication of a complex number by
1 + 4i

10 results in an anti-clockwise ro-
tation about the origin and a small
radial movement outwards. This can
be seen to reflect the computation
(1 + 4i

10 )a = 1a + 4
10 (ai) after one

notes that ai is perpendicular to a.
Also note that each line segment has a
length of roughly 4

10 units. Hence the
entire path has a length of approxi-
mately 10 ∗ 4

10 = 4 units.

Declaration III:14(3.17)

The notation cosn(z), where z is a complex num-
ber and n is a positive integer, will be used as a

shorthand for expn(iz)+expn(−iz)
2 .

Procedure III:41(3.22)

Objective

Choose a rational number x and a positive integer
n. The objective of the following instructions is to
show that re(expn(ix)) = cosn(x).

Implementation

1. Show that re(expn(ix))

(a) = expn(ix)+(expn(ix))−

2

(b) = expn(ix)+expn((ix)−)
2

(c) = expn(ix)+expn(−ix)
2

(d) = cosn(x).

Declaration III:15(3.18)

The notation sinn(z), where z is a complex number
and n is a positive integer, will be used as a short-

hand for expn(iz)−expn(−iz)
2i .

Procedure III:42(3.23)

Objective

Choose a rational number x and a positive integer
n. The objective of the following instructions is to
show that im(expn(ix)) = sinn(x).

Implementation

1. Show that im(expn(ix))

(a) = expn(ix)−(expn(ix))−

2i

(b) = expn(ix)−expn((ix)−)
2i

(c) = expn(ix)−expn(−ix)
2i

(d) = sinn(x).

Procedure III:43(3.24)

Objective

Choose a rational number X ≥ 0. The objec-
tive of the following instructions is to construct
two rational numbers a, b, and a procedure, p(x, y,
n), to show that cosn(x + y) ≡ cosn(x) cosn(y) −
sinn(x) sinn(y) (err axy

n ) (err aX2

n ) when two com-
plex numbers x, y and a positive integer n > b such
that ‖x‖2 ≤ X2 and ‖y‖2 ≤ X2 are chosen.
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Implementation

1. Execute procedure III:36 on 〈X〉 and let 〈a, b,
q〉 receive.

2. Let p(x, y, n) be the following procedure:

(a) Using procedure q, show that cosn(x+ y)

i. = 1
2 (expn(i(x+ y)) + expn(−i(x+ y)))

ii. ≡ 1
2 (expn(ix) expn(iy) + expn(−i(x +

y))) (err a(ix)(iy)
2n )

iii. ≡ 1
2 (expn(ix) expn(iy)+expn(−ix) expn(−iy))

(err a(−ix)(−iy)
2n )

iv. = 1
4 (expn(ix) expn(iy)+expn(−ix) expn(−iy))+

1
4 (expn(ix) expn(iy)+expn(−ix) expn(−iy))

v. = 1
4 (expn(ix)(expn(iy) + expn(−iy)) +

(expn(−ix) − expn(ix)) expn(−iy)) +
1
4 ((expn(ix) − expn(−ix)) expn(iy) +
expn(−ix)(expn(iy) + expn(−iy)))

vi. = 1
2 expn(ix) cosn(y)+ 1

2i sinn(x) expn(−iy)−
1
2i sinn(x) expn(iy) + 1

2 expn(−ix) cosn(y)

vii. = cosn(x) cosn(y)− sinn(x) sinn(y)

(b) Hence show that cosn(x + y) ≡
cosn(x) cosn(y)−sinn(x) sinn(y) (err axy

n ) (err aX2

n ).

3. Yield the tuple 〈a, b, p〉.

Procedure III:44(3.25)

Objective

Choose a rational number X ≥ 0. The objec-
tive of the following instructions is to construct
two rational numbers a, b, and a procedure, p(x, y,
n), to show that sinn(x + y) ≡ sinn(x) cosn(y) −
cosn(x) sinn(y) (err axy

n ) (err aX2

n ) when two com-
plex numbers x, y and a positive integer n > b such
that ‖x‖2 ≤ X2 and ‖y‖2 ≤ X2 are chosen.

Implementation

Implementation is analogous to that of procedure
III:43.

Procedure III:45(3.26)

Objective

Choose a rational number X ≥ 0. The objective of
the following instructions is to construct two ratio-

nal numbers a, b, and a procedure, p(x, n), to show

that cosn(x)2 + sinn(x)2 ≡ 1 (err a‖x‖2
n ) (err aX2

n )
when a complex number x and a positive integer n
such that ‖x‖2 ≤ X2 and n > b are chosen.

Implementation

1. Execute procedure III:36 on 〈X〉 and let 〈a, b,
q〉 receive.

2. Let p(x, n) be the following procedure:

(a) Using procedure q, show that cosn(x)2 +
sinn(y)2

i. = 1
4 (expn(ix) + expn(−ix))2 +

1
4i2 (expn(ix)− expn(−ix))2

ii. = 1
4 (expn(ix)2 + 2 expn(ix) expn(−ix) +

expn(−ix)2−expn(ix)2+2 expn(ix) expn(−ix)−
expn(−ix)2)

iii. = expn(ix) expn(−ix)

iv. ≡ 1 (err a(−ix)(ix)
n ).

(b) Hence show that cosn(x)2 + sinn(y)2 ≡
1 (err a‖x‖2

n ) (err aX2

n ).

3. Yield the tuple 〈a, b, p〉.

Procedure III:46(sat0308190647)

Objective

Choose a rational number X ≥ 0. The ob-
jective of the following instructions is to con-
struct two rational numbers a, b, and a proce-
dure, p(x, y, n), to show that ‖x expn(iy)‖2 ≡
‖x‖2 (err a‖x‖2‖y‖2

n ) (err a‖x‖2X2

n ) when a complex
number x, a rational number y, and a positive inte-
ger n such that ‖y‖2 ≤ X2 and n > b are chosen.

Implementation

1. Execute procedure III:45 on 〈X〉 and let 〈a, b,
q〉 receive.

2. Let p(x, y, n) be the following procedure:

(a) Using procedure q, procedure III:41, and
procedure III:42, show that ‖x expn(iy)‖2

i. = ‖x‖2‖expn(iy)‖2

ii. = ‖x‖2‖cosn(y) + i sinn(y)‖2

iii. = ‖x‖2(cosn(y)2 + sinn(y)2)
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iv. ≡ ‖x‖2 · 1 (err ‖x‖2 · a‖y‖
2

n ).

(b) Hence show that ‖x expn(iy)‖2 ≡
‖x‖2 (err a‖xy‖2

n ) (err a‖x‖2X2

n ).

Procedure III:47(3.29)

Objective

Choose a rational number X ≥ 0. The objective
of the following instructions is to construct two ra-
tional numbers a,N , and a procedure, p(x, n), to

show that cosn(x) ≡
∑[0:dn2 e]
r

(−1)rx2r

(2r)! (err a
n ) when

a complex number x and an integer n > N such that
‖x‖2 ≤ X2 is chosen.

Implementation

1. Execute procedure III:40 on 〈X〉 and let 〈a,N,
q〉 receive.

2. Let p(x, n) be the following procedure:

(a) Using procedure q, show that cosn(x)

i. = expn(ix)
2 + expn(−ix)

2

ii. ≡ 1
2

∑[0:n+1]
r

(ix)r

r! + expn(−ix)
2 (err a

2n )

iii. ≡ 1
2

∑[0:n+1]
r

(ix)r

r! + 1
2

∑[0:n+1]
r

(−ix)r

r! (err a
2n )

iv. =
∑[0:n+1]
r

(ir+(−i)r)xr

2(r!)

v. =
∑[0:n+1]
r

[r mod 2=0](−1)
r
2 xr

r!

vi. =
∑[0:dn2 e]
r

(−1)rx2r

(2r)! .

(b) Hence show that cosn(x) ≡∑[0:dn2 e]
r

(−1)rx2r

(2r)! (err a
n ).

Procedure III:48(3.30)

Objective

Choose a rational number X ≥ 0. The objective of
the following instructions is to construct two ratio-
nal numbers a,N , and a procedure, p(x, n), to show

that sinn(x) ≡
∑[0:bn+1

2 c]
r

(−1)rx2r+1

(2r+1)! (err a
n ) when a

complex number x and an integer n > N such that
‖x‖2 ≤ X2 is chosen.

Implementation

Implementation is analogous to that of procedure
III:47.
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Chapter 11

Binomial and Mercator Series

Declaration III:16(sun2107190610)

The notation (1 +x)an, where x, a are complex num-
bers and n is a positive integer, will be used as a

shorthand for
∑[0:n]
r

(
a
r

)
xr.

Procedure III:49(sun2107190619)

Objective

Choose a complex number x and two non-negative
integers a, n such that n > a. The objective of the
following instructions is to show that (1 + x)an =
(1 + x)a.

Implementation

1. Using procedure III:22, show that (1 + x)an =

(a) =
∑[0:n]
r

(
a
r

)
xr

(b) =
∑[0:n]
r

ar

r! x
r

(c) =
∑[0:a+1]
r

ar

r! x
r +

∑[a+1:n]
r

ar

r! x
r

(d) =
∑[0:a+1]
r

ar

r! x
r +

∑[a+1:n]
r

0
r!x

r

(e) =
∑[0:a+1]
r

(
a
r

)
xr

(f) = (1 + x)a.

Procedure III:50(sun2107190640)

Objective

Choose two complex numbers x, y and a positive in-
teger N . The objective of the following instructions
is to show that

(
x+y
N

)
=
∑N+1
k

(
x
k

)(
y

N−k
)
.

Implementation

1. If N = 0, then do the following:

(a) Show that
(
x+y
N

)
= 1 =

∑[0:N+1]
k

(
x
k

)(
y

N−k
)
.

2. Otherwise do the following:

(a) Show that N > 0.

(b) Show that
(
x+y−1
N−1

)
=
∑[0:N ]
k

(
x−1
k

)(
y

N−1−k
)

using procedure III:50.

(c) Show that
(
x+y−1
N−1

)
=
∑[0:N ]
k

(
x
k

)(
y−1

N−1−k
)

us-
ing procedure III:50.

(d) Hence show that
(
x+y
N

)
i. = x+y

N

(
x+y−1
N−1

)
ii. = x

N

(
x+y−1
N−1

)
+ y

N

(
x+y−1
N−1

)
iii. = x

N

∑[0:N ]
k

(
x−1
k

)(
y

N−1−k
)
+ y
N

∑[0:N ]
k

(
x
k

)(
y−1

N−1−k
)

iv. = x
N

∑[1:N+1]
k

(
x−1
k−1

)(
y

N−k
)
+ y
N

∑[0:N ]
k

(
x
k

)(
y−1

N−1−k
)

v. =
∑[0:N+1]
k

k
N

(
x
k

)(
y

N−k
)
+
∑[0:N+1]
k

N−k
N

(
x
k

)(
y

N−k
)

vi. =
∑[0:N+1]
k

(
x
k

)(
y

N−k
)
.

Procedure III:51(sun2107191133)

Objective

Choose complex numbers a, b, x and a natural num-
ber n. The objective of the following instructions
is to show that (1 + x)an(1 + x)bn − (1 + x)a+b

n =∑[1:n]
k

∑[k:n]
r

(
a

k+n−1−r
)(
b
r

)
xk+n−1.
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Implementation

1. Show that (1 + x)an(1 + x)bn − (1 + x)a+b
n

(a) = (
∑[0:n]
k

(
a
k

)
xk)(

∑[0:n]
r

(
b
r

)
xr) −∑[0:n]

k

(
a+b
k

)
xk

(b) =
∑[0:n]
k

∑[0:n]
r

(
a
k

)(
b
r

)
xk+r −

∑[0:n]
k

(
a+b
k

)
xk

(c) =
∑[0:n]
k

∑[0:k+1]
r

(
a
k−r
)(
b
r

)
xk+

∑[n:2n−1]
k

∑[k−n+1:n]
r

(
a
k−r
)(
b
r

)
xk−∑[0:n]

k

(
a+b
k

)
xk

(d) =
∑[0:n]
k

(
a+b
k

)
xk+

∑[1:n]
k

∑[k:n]
r

(
a

k+n−1−r
)(
b
r

)
xk+n−1−∑[0:n]

k

(
a+b
k

)
xk

(e) =
∑[1:n]
k

∑[k:n]
r

(
a

k+n−1−r
)(
b
r

)
xk+n−1.

Procedure III:52(sun2107191247)

Objective

Choose two rational numbers A > 0 and 0 < X < 1.
The objective of the following instructions is to con-
struct rational numbers Y > 0, 0 < Z < 1 and a pro-
cedure p(a, x, n) to show that ‖

(
a
n

)
xn‖2 ≤ (Y Zn)2

when complex numbers a, x such that ‖a+1‖2 < A2

and ‖x‖2 < X2 are chosen.

Implementation

1. Let e = AX
1−X − 1.

2. Let d = b AX1−X c.

3. Show that d > e > −1.

4. Let Z = (1 + A
d+1 )X.

5. Show that 0 < Z < (1 + A
e+1 )X = 1.

6. Let Y = Z−d
∏[0:d]
k

(A+k+1)X
k+1 =

Z−d
∏[0:d]
k X(1 + A

k+1 ).

7. Let p(a, x, n) be the following procedure:

(a) Show that |re(a+ 1)| ≤ A given that re(a+
1)2 ≤ ‖a+ 1‖2 ≤ A2.

(b) Hence show that ‖
(
a
n

)
xn‖2

i. = ‖a
n

n! x
n‖2

ii. = ‖
∏[0:n]
k (a+1−(k+1)

k+1 · x)‖2

iii. =
∏[0:n]
k

‖(a+1)−(k+1)‖2‖x‖2
(k+1)2

iv. =
∏[0:n]
k

(‖a+1‖2−2 re(a+1)(k+1)+(k+1)2)‖x‖2
(k+1)2

v. ≤
∏[0:n]
k

(A2+2A(k+1)+(k+1)2)X2

(k+1)2

vi. = (
∏[0:n]
k

(A+k+1)X
k+1 )2

vii. = (
∏[0:n]
k X(1 + A

k+1 ))2.

(c) If n ≤ d, then do the following:

i. Show that ‖
(
a
n

)
xn‖2

A. ≤ (
∏[0:n]
k X(1 + A

k+1 ))2

B. = (
∏[0:d]
k X(1 + A

k+1 ))2(
∏[n:d]
k X(1 +

A
k+1 ))−2

C. ≤ (
∏[0:d]
k X(1 + A

k+1 ))2(X(1 +
A
d+1 ))−2(d−n)

D. = Y 2Z2n.

(d) Otherwise do the following:

i. Show that ‖
(
a
n

)
xn‖2

A. ≤ (
∏[0:n]
k X(1 + A

k+1 ))2

B. = (
∏[0:d]
k X(1 + A

k+1 ))2(
∏[d:n]
k X(1 +

A
k+1 ))2

C. ≤ (
∏[0:d]
k X(1 + A

k+1 ))2(X(1 +
A
d+1 ))2(n−d)

D. = Y 2Z2n.

8. Yield the tuple 〈Y,Z, p〉.

Procedure III:53(wed2407191422)

Objective

Choose a rational number 0 < X < 1 and a pos-
itive integer k. The objective of the following in-
structions is to construct rational numbers Y > 0,
0 < Z < 1 and a procedure p(x, n) to show that
‖nkxn‖2 ≤ (Y Zn)2 when a complex number x such
that ‖x‖2 ≤ X2 is chosen.

Implementation

1. Let e = k
1−X − 1.

2. Let d = b k
1−X c.

3. Show that d > e > k − 1.

4. Let Z = (1 + 1
d )kX.

5. Show that Z < (1 + 1
e )kX.
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6. Now show that 0 < Z < (1 + 1
e )kX ≤

1+ 1
e

1−(k−1) 1
e

·X = 1 using procedure II:31.

7. Let Y = Z−dX
∏[1:d]
r X(1 + 1

r )k.

8. Let p(x, n) be the following procedure:

(a) Show that ‖nkxn‖2

i. ≤ ‖x
∏[1:n]
r x · (r+1)k

rk
‖2

ii. = ‖x‖2
∏[1:n]
r ‖x‖2( (r+1)k

rk
)2

iii. ≤ X2
∏[1:n]
r ((1 + 1

r )kX)2.

(b) If n ≤ d, then do the following:

i. Show that ‖nkxn‖2

A. ≤ X2(
∏[1:n]
r X(1 + 1

r )k)2

B. = X2(
∏[1:d]
r X(1 + 1

r )k)2 · (
∏[n:d]
r X(1 +

1
r )k)−2

C. ≤ X2(
∏[1:d]
r X(1 + 1

r )k)2(X(1 +
1
d )k)−2(d−n)

D. = Y 2Z2n.

(c) Otherwise do the following:

i. Show that ‖nkxn‖2

A. ≤ X2(
∏[1:n]
r X(1 + 1

r )k)2

B. = X2(
∏[1:d]
r X(1 + 1

r )k)2(
∏[d:n]
r X(1 +

1
r )k)2

C. ≤ X2(
∏[1:d]
r X(1 + 1

r )k)2(X(1 +
1
d )k)2(n−d)

D. = Y 2Z2n.

9. Yield the tuple 〈Y, Z, p〉.

Procedure III:54(wed2407191521)

Objective

Choose two rational numbers A > 0, 1 > X > 0.
The objective of the following instructions is to con-
struct rational numbers D > 0, 0 < G < 1, and
a procedure p(x, a, b, n) to show that (1 + x)a+b

n ≡
(1 + x)an(1 + x)bn (err DGn) when ‖x‖2 ≤ X, and
‖a‖2, ‖b‖2 < A.

Implementation

1. Execute procedure III:52 on 〈A,X〉 and let 〈B,
C, q〉 receive.

2. Execute procedure III:53 on 〈C, 1〉 and let 〈F,
G, t〉 receive.

3. Let D = B2F
1−C .

4. Let p(x, a, b, n) be the following procedure:

(a) For each r ∈ [1 : n], do the following:

i. Show that ‖
(
a
r

)
xr‖2 ≤ (BCr)2 using pro-

cedure q.

ii. Show that ‖
(
b
r

)
xr‖2 ≤ (BCr)2 using pro-

cedure q, .

(b) Show that ‖nCn‖2 ≤ (FGn)2 using proce-
dure t.

(c) Hence show that (1+x)a+b
n ≡ (1+x)an(1+x)bn

i. (err (1 + x)an(1 + x)bn − (1 + x)a+b
n )

ii. (err
∑[1:n]
k

∑[k:n]
r

(
a

k+n−1−r
)(
b
r

)
xk+n−1)

iii. (err
∑[1:n]
k

∑[k:n]
r

(
a

k+n−1−r
)
xk+n−1−r(b

r

)
xr)

iv. (err
∑[1:n]
k

∑[k:n]
r BCk+n−1−rBCr)

v. (err B2Cn
∑[1:n]
k

∑[k:n]
r Ck−1)

vi. (err B2Cn
∑[1:n]
r

∑[1:r+1]
k Ck−1)

vii. (err B2Cn
∑[1:n]
r

1
1−C )

viii. (err B2

1−C · nC
n)

ix. (err B2F
1−CG

n)

x. (err DGn).

5. Yield the tuple 〈D,G, p〉.

Procedure III:55(wed2407191611)

Objective

Choose two rational numbers A > 0, 1 > X > 0.
The objective of the following instructions is to con-
struct a rational number D and a procedure p(x,
n, a, k) to show that ‖((1 + x)an)k‖2 < D2 when
complex numbers x, a and positive integers n, k such
that ‖x‖2 < X2 and ‖ka‖2 < A2.
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Implementation

1. Execute procedure III:34 on 〈ABX1−C 〉 and let 〈E,
N, t〉 receive.

2. Execute procedure III:52 on 〈A+1, X〉 and let
〈B,C, q〉 receive.

3. Let D = max(E, (1 + ABX
1−C )bNc).

4. Let p(x, n, a, k) be the following procedure:

(a) For each r ∈ [1 : n], do the following:

i. Show that ‖a‖2 ≤ ‖ka‖2 ≤ A2.

ii. Show that ‖a− 1‖2 ≤ (A+ 1)2.

iii. Hence show that ‖
(
a−1
r−1

)
xr−1‖2 ≤ (BCr)2

using procedure q.

(b) Hence show that ‖k
∑[1:n]
r

(
a
r

)
xr‖2

i. = ‖k
∑[1:n]
r

a
r

(
a−1
r−1

)
xr‖2

ii. = ‖kax
∑[1:n]
r

1
r

(
a−1
r−1

)
xr−1‖2

iii. ≤ (AX
∑[1:n]
r BCr−1)2

iv. ≤ (ABX1−C )2.

(c) If k > N , then do the following:

i. Hence using procedure t, show that ‖((1+
x)an)k‖2

A. = ‖(
∑[0:n]
r

(
a
r

)
xr)k‖2

B. = ‖(1 +
∑[1:n]
r

(
a
r

)
xr)k‖2

C. = ‖expk(k
∑[1:n]
r

(
a
r

)
xr)‖2

D. ≤ E2

E. ≤ D2.

(d) Otherwise do the following:

i. Show that ‖
∑[1:n]
r

(
a
r

)
xr)k‖2

A. ≤ ‖k
∑[1:n]
r

(
a
r

)
xr‖2

B. ≤ (ABX1−C )2.

ii. Hence show that ‖((1 + x)an)k‖2

A. = (‖(1 + x)an‖2)k

B. = (‖1 +
∑[1:n]
r

(
a
r

)
xr‖2)k

C. ≤ (1 + ABX
1−C )2k

D. ≤ D2.

5. Yield 〈D, p〉.

Procedure III:56(tue2008190712)

Objective

Choose two rational numbers A > 0, 1 > X > 0.
The objective of the following instructions is to con-
struct positive rational numbers D,N , and a proce-
dure p(x, a, n) to show that ‖(1 + x)an‖2 ≥ D2 when
complex numbers x, a and an integer n such that
‖x‖2 ≤ X2, ‖a‖ ≤ A2, and n > N are chosen.

Implementation

1. Execute procedure III:54 on 〈A,X〉 and let
〈a1, b1, p1〉 receive.

2. Execute procedure III:53 on 〈b1, 1〉 and let 〈a2,
b2, p2〉 receive.

3. Execute procedure III:55 on 〈A,X〉 and let
〈a3, p3〉 receive.

4. Let D = 1
2a3

.

5. Let N = 2a1a2.

6. Let p(x, a, n) be the following procedure:

(a) Show that ‖nb1n‖2 ≤ (a2b2
n)2 ≤ a2

2 using
procedure p2.

(b) Hence show that (a1b1
n)2 ≤ (a1a2n )2.

(c) Show that ‖((1 + x)−an )1‖2 ≤ a3
2 using pro-

cedure p3.

(d) Using procedure p1, show that ‖(1+x)−an (1+
x)an − 1‖2

i. = ‖(1 + x)−an (1 + x)an − (1 + x)−a+a
n ‖2

ii. ≤ (a1b1
n)2.

(e) Hence using procedure III:17, show that
1
2 − ‖(1 + x)−an (1 + x)an‖2

i. = 1
2‖1‖

2 − ‖(1 + x)−an (1 + x)an‖2

ii. ≤ ‖1− (1 + x)−an (1 + x)an‖2

iii. ≤ (a1b1
n)2

iv. ≤ (a1a2n )2

v. ≤ 1
4 .

(f) Hence show that ( 1
2 )2

i. ≤ ‖(1 + x)−an (1 + x)an‖2
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ii. ≤ a3
2‖(1 + x)an‖2.

(g) Hence show that D2 ≤ ‖(1 + x)an‖2.

7. Yield the tuple 〈D,N, p〉.

Procedure III:57(tue2008190849)

Objective

Choose two rational numbers A > 0 and 1 > X > 0.
The objective of the following instructions is to
construct positive rational numbers B,C,D, and a
procedure p(x, a, b, n) to show that (1 + x)a−bn ≡
(1+x)an
(1+x)bn

(err BCn) when complex numbers x, a, b and

an integer n such that ‖x‖2 ≤ X2, ‖a‖2 ≤ A2,
‖b‖2 ≤ A2, and n > D are chosen.

Implementation

1. Execute procedure III:54 on 〈A,X〉 and let
〈a1, C, p1〉 receive.

2. Execute procedure III:56 on 〈A,X〉 and let
〈a2, D, p2〉 receive.

3. Execute procedure III:55 on 〈A,X〉 and let
〈a3, p3〉 receive.

4. Let B = (1 + a3
a2

)a1.

5. Let p(x, a, b, n) be the following procedure:

(a) Using procedures p1, p2, p3, show that (1 +
x)a−bn

i. ≡ (1 + x)an(1 + x)−bn (err a1C
n)

ii. = (1 + x)an
(1+x)bn(1+x)−b

n

(1+x)bn

iii. ≡ ((1 + x)an)1 (1+x)b−b
n

(1+x)bn
(err a3

a1C
n

a2
)

iv. =
(1+x)an
(1+x)bn

(b) Hence show that (1 + x)a−bn ≡
(1+x)an
(1+x)bn

(err (1 + a3
a2

)a1C
n) (err BCn).

6. Yield the tuple 〈B,C,D, p〉.

Procedure III:58(wed2407191627)

Objective

Choose two rational numbers A > 0, 1 > X > 0.
The objective of the following instructions is to con-
struct rational numbers G > 0, 0 < C < 1, and
a procedure p(x, n, a, k) to show that (1 + x)kan ≡

((1 +x)an)k (err GkCn) when a non-negative integer
k and complex numbers x, a such that ‖x‖2 ≤ X2

and ‖ka‖2 < A2 are chosen.

Implementation

1. Execute procedure III:55 on 〈A,X〉 and let 〈D,
t〉 receive.

2. Execute procedure III:54 on 〈A,X〉 and let 〈B,
C, q〉 receive.

3. Let G = DB.

4. Let p(x, n, a, k) be the following procedure:

(a) Hence using procedures t, q, show that (1 +
x)kan

i. = ((1 + x)an)0(1 + x)kan

ii. ≡ ((1 + x)an)1(1 + x)
(k−1)a
n (err DBCn)

iii. ≡ ((1 + x)an)2(1 + x)
(k−2)a
n (err DBCn)

iv.
...

v. ≡ ((1 + x)an)k(1 + x)
(k−k)a
n (err DBCn)

vi. = ((1 + x)an)k.

(b) Hence show that (1 + x)kan ≡ ((1 +
x)an)k (err kDBCn) (err GkCn).

5. Yield the tuple 〈G,C,D, p〉.

Procedure III:59(sun0812190858)

Objective

Choose two non-negative rational numbers a, b and
two non-negative integers r, n such that b < r <
n−a−1. The objective of the following instructions
is to show that sgn(

(
b
r

)(
a

n−r
)
) = sgn(

(
b
r+1

)(
a

n−r−1

)
).

Implementation

1. Show that sgn( b−rr+1 ·
n−r

a−n+r+1 ) = 1

(a) given that b−r
r+1 ·

n−r
a−n+r+1 > 0

(b) given that b−r
(a+1)−(n−r) > 0

(c) given that r > b and n− r > a+ 1.

2. Hence show that sgn(
(
b
r+1

)(
a

n−r−1

)
)

(a) = sgn( b−rr+1

(
b
r

)
· n−r
a−n+r+1

(
a

n−r
)
)

(b) = sgn( b−rr+1 ·
n−r

a−n+r+1 ) sgn(
(
b
r

)(
a

n−r
)
)
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(c) = sgn(
(
b
r

)(
a

n−r
)
).

Procedure III:60(sun0812190920)

Objective

Choose two non-negative rational numbers a, b
and an integer n ≥ dae + dbe. The ob-
jective of the following instructions is to show

that
∑[0:n+1]
r ‖

(
b
r

)(
a

n−r
)
‖ =

∑[0:dbe]
r ‖

(
b
r

)(
a

n−r
)
‖ +

‖
∑[dbe:dn−ae]
r

(
b
r

)(
a

n−r
)
‖+

∑[dn−ae:n+1]
r ‖

(
b
r

)(
a

n−r
)
‖.

Implementation

1. Verify that dbe ≤ bn− ac.

2. For r in [dbe : bn− ae], do the following:

(a) Show that sgn(
(
b
r

)(
a

n−r
)
) = sgn(

(
b
r+1

)(
a

n−r−1

)
)

using procedure III:59.

3. Hence show that
∑[dbe:dn−ae]
r ‖

(
b
r

)(
a

n−r
)
‖ =

‖
∑[dbe:dn−ae]
r

(
b
r

)(
a

n−r
)
‖.

4. Hence show that
∑[0:n+1]
r ‖

(
b
r

)(
a

n−r
)
‖

(a) =
∑[0:dbe]
r ‖

(
b
r

)(
a

n−r
)
‖+
∑[dbe:dn−ae]
r ‖

(
b
r

)(
a

n−r
)
‖+∑[dn−ae:n+1]

r ‖
(
b
r

)(
a

n−r
)
‖

(b) =
∑[0:dbe]
r ‖

(
b
r

)(
a

n−r
)
‖+‖

∑[dbe:dn−ae]
r

(
b
r

)(
a

n−r
)
‖+∑[dn−ae:n+1]

r ‖
(
b
r

)(
a

n−r
)
‖.

Procedure III:61(wed2407191824)

Objective

Choose a rational number A > 0. The objective
of the following instructions is to construct rational
numbers M > 1, N > 0, and a procedure p(a, n) to
show that ‖

(
a
n

)
‖2 ≤ (Mn )2(dae) and M

n < 1 when a
rational number −1 < a < A and an integer n > N
are chosen.

Implementation

1. Let M = 2A.

2. Let N = 2A.

3. Let p(a, n) be the following procedure:

(a) Show that 2a
n < 2A

2A = 1

i. given that n > N = 2A > 2a

ii. and −1 < a < A.

(b) Show that n− bac > n− a > n− n
2 = n

2

i. given that n
2 > a

ii. given that n > N = 2A > 2a.

(c) Hence show that ‖
(
a
n

)
‖2

i. = ‖a
n

n! ‖
2

ii. = ‖
∏[0:n]
k

a−k
k+1‖

2

iii. =
∏[0:n]
k

(a−k)2

(k+1)2

iv. =
∏[0:dae]
k (k − a)2 ·

∏[0:n]
k

(k+bac+1−a)2

(k+1)2 ·∏[n−dae:n]
k

1
(k+1)2

v. ≤ (adae · 1n · ( 1
n−bac )

dae)2

vi. = ( a
n−bac )

2(dae)

vii. ≤ ( 2a
n )2(dae)

viii. ≤ (Mn )2(dae).

4. Yield the tuple 〈M,N, p〉.

Procedure III:62(sun0812191002)

Objective

Choose a positive integer A. The objective of the fol-
lowing instructions is to construct a rational number
B, an integer N , and a procedure p(a, b, n) to show

that
∑[0:n+1]
r ‖

(
b
r

)(
a

n−r
)
‖ ≤ B

n when non-negative
rational numbers a, b, and an integer n such that
a < A,b < A, and n > N are chosen.

Implementation

1. Execute procedure III:61 on 〈A〉 and let 〈M,
Q, q〉 receive.

2. Let N = max(2A,Q+A).

3. Let B = MA(MA + 8A!A).

4. Let p(a, b, n) be the following procedure:

(a) Show that n > N ≥ Q.

(b) Now show that ‖
(
a+b
n

)
‖ ≤ (Mn )da+be ≤

MdA+be

n ≤ MA+dbe

n ≤ M2A

n using procedure
q.

(c) For r in [0 : dbe], do the following:

i. Show that n− r ≥ N −dbe ≥ Q+A−A =
Q.
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ii. Now show that ‖
(
a

n−r
)
‖2 ≤ ( M

n−r )2dae ≤
(M

A

r )2 ≤ ( MA

n−bac )
2 ≤ ( M

A

n−A )2 ≤
( MA

n− 1
2N

)2 ≤ (M
A

1
2n

)2 = ( 2MA

n )2 using pro-

cedure q.

(d) For r in [dn− ae : n+ 1], do the following:

i. Show that r ≥ dn − ae = n − bac ≥
N − bac ≥ Q+A−A = Q.

ii. Now show that ‖
(
b
r

)
‖2 ≤ (Mr )2dbe ≤

(M
A

r )2 ≤ ( 2MA

n )2 using procedure q.

(e) Hence using procedure III:60, show that∑[0:n+1]
r ‖

(
b
r

)(
a

n−r
)
‖

i. =
∑[0:dbe]
r ‖

(
b
r

)(
a

n−r
)
‖+‖

∑[dbe:dn−ae]
r

(
b
r

)(
a

n−r
)
‖+∑[dn−ae:n+1]

r ‖
(
b
r

)(
a

n−r
)
‖

ii. =
∑[0:dbe]
r ‖

(
b
r

)(
a

n−r
)
‖+‖

∑[0:n+1]
r

(
b
r

)(
a

n−r
)
−∑[0:dbe]

r

(
b
r

)(
a

n−r
)
−
∑[dn−ae:n+1]
r

(
b
r

)(
a

n−r
)
‖+∑[dn−ae:n+1]

r ‖
(
b
r

)(
a

n−r
)
‖

iii. = 2
∑[0:dbe]
r ‖

(
b
r

)(
a

n−r
)
‖+‖

∑[0:n+1]
r

(
b
r

)(
a

n−r
)
‖+

2
∑[dn−ae:n+1]
r ‖

(
b
r

)(
a

n−r
)
‖

iv. = ‖
(
a+b
n

)
‖ + 2(

∑[0:dbe]
r ‖

(
b
r

)(
a

n−r
)
‖ +∑[dn−ae:n+1]

r ‖
(
b
r

)(
a

n−r
)
‖)

v. ≤ M2A

n + 2(
∑[0:dbe]
r A! 2MA

n +∑[dn−ae:n+1]
r

2MA

n A!)

vi. ≤ MA

n (MA + 8A!A
n )

vii. = B
n .

5. Yield the tuple 〈B,N, p〉.

Procedure III:63(thu2507190646)

Objective

Choose a rational number 1 > X ≥ 0. The objective
of the following instructions is to construct rational
numbers B > 0, N > 0, and a procedure p(x, a, b, n)
to show that (1 + x)a+b

n ≡ (1 + x)an(1 + x)bn (err B
n )

when a complex number x, two positive rational
numbers a, b, and a positive integer n such that
‖x‖2 ≤ 1, re(x) ≥ −X, a < 1, b < 1, and n > N are
chosen.

Implementation

1. Execute procedure III:62 on 〈1〉 and let 〈M,
N, q〉 receive.

2. Let B = 2M
1−X .

3. Let p(x, a, b, n) be the following procedure:

(a) For r ∈ [1 : n], for k ∈ [0 : r], show that(
a

k+1+n−r
)
(−1)k+1 −

(
a

k+n−r
)
(−1)k

i. = (−1)k+1(
(

a
k+1+n−r

)
+
(

a
k+n−r

)
)

ii. = (−1)k+1
(

a+1
k+1+n−r

)
iii. = (−1)−(k+1)‖

(
a+1

k+1+n−r
)
‖(−1)k+1+n−r

iv. = ‖
(

a+1
k+1+n−r

)
‖(−1)n−r.

(b) Now show that
∑[0:n+1]
r ‖

(
b
r

)(
a

n−r
)
‖ ≤ M

n us-
ing procedure q.

(c) Show that ‖x+ 1‖2 = re(x+ 1)2 + im(x)2 ≥
(1−X)2.

(d) Hence using procedure III:51, show that
(1 + x)a+b

n ≡ (1 + x)an(1 + x)bn

i. (err (1 + x)an(1 + x)bn − (1 + x)a+b
n )

ii. (err
∑[1:n]
k

∑[k:n]
r

(
a

k+n−1−r
)(
b
r

)
xk+n−1)

iii. (err xn
∑[1:n]
r

(
b
r

)∑[0:r]
k

(
a

k+n−r
)
xk)

iv. (err xn
∑[1:n]
r

(
b
r

)∑[0:r]
k (

(
a

k+1+n−r
)
(−1)k+1·

(−x)k+1

−x−1 −
(

a
k+n−r

)
(−1)k · (−x)k

−x−1 −
(−x)k+1

−x−1 (
(

a
k+1+n−r

)
(−1)k+1−

(
a

k+n−r
)
(−1)k)))

v. (err xn

x+1

∑[1:n]
r

(
b
r

)
(
(
a
n

)
xr −

(
a

n−r
)
−∑[0:r]

k (−x)k+1(
(

a
k+1+n−r

)
(−1)k+1 −(

a
k+n−r

)
(−1)k)))

vi. (err 1
1−X

∑[1:n]
r ‖

(
b
r

)
‖(‖
(
a
n

)
‖ +

‖
(
a

n−r
)
‖ +

∑[0:r]
k ‖

(
a

k+1+n−r
)
(−1)k+1 −(

a
k+n−r

)
(−1)k‖))

vii. (err 1
1−X

∑[1:n]
r ‖

(
b
r

)
‖(‖
(
a
n

)
‖ +

‖
(
a

n−r
)
‖ + ‖

∑[0:r]
k (

(
a

k+1+n−r
)
(−1)k+1 −(

a
k+n−r

)
(−1)k)‖))

viii. (err 1
1−X

∑[1:n]
r ‖

(
b
r

)
‖(‖
(
a
n

)
‖ + ‖

(
a

n−r
)
‖ +

‖
(
a
n

)
(−1)r −

(
a

n−r
)
‖))

ix. (err 2
1−X

∑[1:n]
r ‖

(
b
r

)
‖‖
(
a

n−r
)
‖)
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x. (err B
n ).

4. Yield the tuple 〈B,N, p〉.

Procedure III:64(thu2507191017)

Objective

Choose a rational number 0 ≤ X < 1. The objec-
tive of the following instructions is to construct a
positive rational number D such that D > 1, and a
procedure p(x, n, a, k) to show that ‖((1+x)an)k‖2 <
D2 when a complex number x, a rational number
a, and positive integers n, k such that ‖x‖2 ≤ 1,
re(x) ≥ −X, and (ka)2 < 1 are chosen.

Implementation

1. Execute procedure III:34 on 〈 2
1−X 〉 and let 〈E,

N, q〉 receive.

2. Let D = max(E, (1 + 2
1−X )bNc).

3. Let p(x, n, a, k) be the following procedure:

(a) For t ∈ [1 : n], show that
(
a
t+1

)
(−1)t+1 −(

a
t

)
(−1)t

i. = (−1)t+1(
(
a
t+1

)
+
(
a
t

)
)

ii. = (−1)t+1 · (a+1)t+1

(t+1)!

iii. > 0.

(b) Hence show that ‖k
∑[1:n]
t

(
a
t

)
xt‖2

i. = ‖k
∑[1:n]
t (

(
a
t+1

)
(−1)t+1 · (−x)t+1

−x−1 −(
a
t

)
(−1)t · (−x)t

−x−1 −
(−x)t+1

−x−1 (
(
a
t+1

)
(−1)t+1 −(

a
t

)
(−1)t))‖2

ii. = k2

‖x+1‖2 ‖
(
a
n

)
xn−

(
a
1

)
x1−

∑[1:n]
t (−x)t+1(

(
a
t+1

)
(−1)t+1−(

a
t

)
(−1)t)‖2

iii. ≤ k2

(re(x)+1)2+im(x)2 (|
(
a
n

)
| + a +∑[1:n]

t |
(
a
t+1

)
(−1)t+1 −

(
a
t

)
(−1)t|)2

iv. ≤ k2

(1−X)2 (|
(
a
n

)
|+a+

∑[1:n]
t (

(
a
t+1

)
(−1)t+1−(

a
t

)
(−1)t))2

v. = k2

(1−X)2 (|
(
a
n

)
|+a+

(
a
n

)
(−1)n−

(
a
1

)
(−1)1)2

vi. = k2

(1−X)2 (|
(
a
n

)
|+ a− |

(
a
n

)
|+ a)2

vii. = ( 2ak
1−X )2

viii. ≤ ( 2
1−X )2.

(c) If k > N , then do the following:

i. Using procedure q, show that ‖((1 +
x)an)k‖2

A. = ‖(
∑[0:n]
t

(
a
t

)
xt)k‖2

B. = ‖(1 +
∑[1:n]
t

(
a
t

)
xt)k‖2

C. = ‖expk(k
∑[1:n]
t

(
a
t

)
xt)‖2

D. ≤ E2.

E. ≤ D2.

(d) Otherwise do the following:

i. Show that ‖
∑[1:n]
t

(
a
t

)
xt‖2

A. ≤ ‖k
∑[1:n]
t

(
a
t

)
xt‖2

B. ≤ ( 2
1−X )2.

ii. Hence show that ‖((1 + x)an)k‖2

A. = (‖(1 + x)an‖2)k

B. = (‖1 +
∑[1:n]
t

(
a
t

)
xt‖2)k

C. ≤ (1 + 2
1−X )2k

D. ≤ D2.

4. Yield the tuple 〈D, p〉.

Procedure III:65(thu2507190752)

Objective

Choose a rational number 0 ≤ X < 1. The objective
of the following instructions is to construct positive
rational numbers G,N and a procedure p(x, n, a, k)
to show that (1 + x)kan ≡ ((1 + x)an)k (err Gk

n ) when
positive integers n, k, a rational number a, and a
complex number x such that ‖x‖2 ≤ 1, re(x) ≥ −X,
k > 1, 0 < ka ≤ 1, and n > N are chosen.

Implementation

1. Execute procedure III:64 on 〈X〉 and let 〈D, t〉
receive.

2. Execute procedure III:63 on 〈X〉 and let 〈B,
N, q〉 receive.

3. Let G = DB.

4. Let p(x, n, a, k) be the following procedure:

(a) Using procedures t, q, show that (1 + x)kan
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i. = ((1 + x)an)0(1 + x)kan

ii. ≡ ((1 + x)an)1(1 + x)
(k−1)a
n (err DB

n )

iii. ≡ ((1 + x)an)2(1 + x)
(k−2)a
n (err DB

n )

iv.
...

v. ≡ ((1 + x)an)k(1 + x)
(k−k)a
n (err DB

n )

vi. = ((1 + x)an)k.

(b) Hence show that (1 + x)kan ≡ ((1 +
x)an)k (err DBk

n ) (err Gk
n ).

5. Yield the tuple 〈G,D,N, p〉.

Procedure III:66(fri2607191210)

Objective

Choose a rational number 1 > X ≥ 0. The objective
of the following instructions is to construct positive
rational numbers a, c such that b > 1, and a proce-

dure p(x, n, k) to show that expn(n((1+x)
1
n

k −1)) ≡
1 + x (err an

k ) when a complex number x, and pos-
itive integers n, k such that ‖x‖2 ≤ 1, re(x) ≥ −X,
n > 1, and k > c are chosen.

Implementation

1. Execute procedure III:65 on 〈X〉 and let 〈a, c,
p1〉 receive.

2. Let p(x, n, k) be the following procedure:

(a) Using procedure p1 and procedure III:49,

show that expn(n((1 + x)
1
n

k − 1))

i. = (1 + 1
n (n((1 + x)

1
n

k − 1)))n

ii. = ((1 + x)
1
n

k )n

iii. ≡ (1 + x)1
k (err an

k )

iv. = (1 + x)1

v. = 1 + x.

(b) Hence show that expn(n((1+x)
1
n

k −1)) ≡
1 + x (err an

k ).

3. Yield the tuple 〈a, c, p〉.

Procedure III:67(fri2607191243)

Objective

Choose a rational number 1 > X ≥ 0. The objective
of the following instructions is to construct a ratio-
nal number a > 0 and a procedure p(x, n, k) to show

that ‖n((1 +x)
1
n

k − 1)‖2 ≤ a2 when positive integers
n, k, and a complex number x such that ‖x‖2 ≤ 1
and re(x) ≥ −X are chosen.

Implementation

1. Let a = 2
1−X .

2. Let p(x, n, k) be the following procedure:

(a) Show that ‖n((1 + x)
1
n

k − 1)‖2

i. = ‖n(
∑[0:k]
r

( 1
n
r

)
xr − 1)‖2

ii. = ‖n
∑[1:k]
r

( 1
n
r

)
(−1)r(−x)r‖2

iii. = n2‖
∑[1:k]
r (

( 1
n
r+1

)
(−1)r+1 · (−x)r+1

−x−1 −( 1
n
r

)
(−1)r · (−x)r

−x−1 − (
( 1

n
r+1

)
(−1)r+1 −( 1

n
r

)
(−1)r) (−x)r+1

−x−1 )‖2

iv. = n2

‖x+1‖2 ‖
( 1

n
k

)
xk−

( 1
n
1

)
x1−

∑[1:k]
r (

( 1
n
r+1

)
(−1)r+1−( 1

n
r

)
(−1)r)(−x)r+1‖2

v. ≤ n2

‖x+1‖2 ‖
( 1

n
k

)
(−1)k−1 + 1

n +∑[1:k]
r (

( 1
n
r+1

)
(−1)r+1 −

( 1
n
r

)
(−1)r)‖2

vi. = n2

(re(x)+1)2+im(x)2 (
( 1

n
k

)
(−1)k−1 + 1

n +( 1
n
k

)
(−1)k −

( 1
n
1

)
(−1)1)2

vii. ≤ n2

(1−X)2 ( 2
n )2

viii. = a2.

3. Yield the tuple 〈a, p〉.

Declaration III:17(fri0108191325)

The notation ω(r) will be used as a shorthand no-

tation for 1
r (1−

∏[1:r]
t (1− 1

nt )).

Procedure III:68(thu0108191318)

Objective

Choose two positive integers r, n such that r > 1.
The objective of the following instructions is to show

that ω(r+1)
ω(r) ≤ 1.
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Implementation

1. Using procedure II:30, show that ω(r+1)
ω(r)

(a) =
1

r+1 (1−
∏[1:r+1]

t (1− 1
nt ))

1
r (1−

∏[1:r]
t (1− 1

nt ))

(b) = r
r+1 ·

1−(1− 1
nr )

∏[1:r]
t (1− 1

nt )

1−
∏[1:r]

t (1− 1
nt )

(c) = r
r+1

(
1 +

1
nr

∏[1:r]
t (1− 1

nt )

1−
∏[1:r]

t (1− 1
nt )

)
(d) = r

r+1

(
1 +

1
nr

(
∏[1:r]

t (1− 1
nt ))−1−1

)
(e) ≤ r

r+1

(
1 +

1
nr

(1− 1
n(r−1)

)−(r−1)−1

)
(f) = r

r+1

(
1 +

1
nr

(1+ 1
nr−n−1 )r−1−1

)
(g) ≤ r

r+1

(
1 +

1
nr

(1+ 1
n(r−1)

)r−1−1

)
(h) ≤ r

r+1

(
1 +

1
nr

1+ r−1
n(r−1)

−1

)
(i) = r

r+1 (1 + 1
r )

(j) = 1.

Declaration III:18(fri2607191453)

The notation lnk(1 + x) will be used as a shorthand

for
∑[1:k]
r

(−1)r−1

r xr.

Procedure III:69(fri2607191450)

Objective

Choose a rational number 1 > X ≥ 0. The objective
of the following instructions is to construct a posi-
tive rational number a and a procedure p(x, n, k) to

show that lnk(1+x) ≡ n((1+x)
1
n

k −1) (err a
n ) when

positive integers n, k and a complex number x such
that ‖x‖2 ≤ 1 and re(x) ≥ −X are chosen.

Implementation

1. Let a = 1
1−X .

2. Let p(x, n, k) be the following procedure:

(a) For r ∈ [2 : k], show that ω(r+1)
ω(r) ≤ 1 using

procedure III:68.

(b) Also show that ‖x + 1‖2 ≥ re(x + 1)2 +
im(x)2 ≥ (1−X)2.

(c) Hence show that lnk(1+x) ≡ n((1+x)
1
n

k −1)

i. (err lnk(1 + x)− n((1 + x)
1
n

k − 1))

ii. (err
∑[1:k]
r

(−1)r−1

r xr − n(
∑[0:k]
r

( 1
n
r

)
xr −

1))

iii. (err
∑[1:k]
r

(−1)r−1

r xr − n
∑[1:k]
r

( 1
n
r

)
xr)

iv. (err
∑[1:k]
r

(−1)r−1

r! xr−
∑[1:k]
r

( 1
n−1)r−1

r! xr)

v. (err
∑[1:k]
r

1
r! ((−1)r−1 − ( 1

n − 1)r−1)xr)

vi. (err
∑[1:k]
r

(−1)r−1

r! (1− ( 1
n−1)r−1

(−1)r−1 )xr)

vii. (err
∑[1:k]
r

(−1)r−1

r (1−
∏[1:r]
t

1
n−t
−t )xr)

viii. (err
∑[1:k]
r ω(r)(−x)r)

ix. (err
∑[1:k]
r (ω(r+1)· (−x)r+1

−x−1 −ω(r)· (−x)r

−x−1−
(ω(r + 1)− ω(r)) · (−x)r+1

−x−1 ))

x. (err 1
x+1 (ω(k)(−x)k − ω(1)(−x)1 −∑[1:k]

r (ω(r + 1)− ω(r))(−x)r+1))

xi. (err 1
x+1 (ω(k)+ω(1)+

∑[2:k]
r (ω(r)−ω(r+

1)) + ω(2)− ω(1)))

xii. (err 1
1−X (ω(k)−ω(k)+ω(2)+ω(2)+ω(1)−

ω(1)))

xiii. (err a
n ).

3. Yield the tuple 〈a, p〉.

Procedure III:70(fri2607191736)

Objective

Choose a rational number 1 > X ≥ 0. The objective
of the following instructions is to construct a ratio-
nal number a > 0 and a procedure p(x, k) to show
that ‖lnk(1 + x)‖2 ≤ a2 when a positive integer k
and a complex number x such that ‖x‖2 ≤ 1 and
re(x) ≥ −X are chosen.

Implementation

1. Let a = 2
1−X .

2. Let p(x, k) be the following procedure:

(a) Show that ‖lnk(1 + x)‖2

i. = ‖
∑[1:k]
r

(−1)r−1

r xr‖2

ii. = ‖
∑[1:k]
r

1
r (−x)r‖2
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iii. = ‖
∑[1:k]
r ( 1

r+1 ·
(−x)r+1

−x−1 −
1
r ·

(−x)r

−x−1−( 1
r+1−

1
r ) · (−x)r+1

−x−1 )‖2

iv. = 1
‖x+1‖2 ‖

1
k (−x)k− 1

1 (−x)1−
∑[1:k]
r ( 1

r+1−
1
r )(−x)r+1‖2

v. ≤ 1
‖x+1‖2 ( 1

k + 1 +
∑[1:k]
r ( 1

r −
1
r+1 ))2

vi. = 1
‖x+1‖2 ( 1

k + 1− 1
k + 1)2

vii. = 4
(re(x)+1)2+im(x)2

viii. ≤ a2

3. Yield the tuple 〈a, p〉.

Procedure III:71(fri2607191801)

Objective

Choose a rational number 1 > X ≥ 0. The objective
of the following instructions is to construct positive
rational numbers a, c, d, e such that b > 1, and a
procedure p(x, n, k) to show that expn(lnk(1+x)) ≡
1 +x (err an

k + c
n ) when positive integers n, k, and a

complex number x such that ‖x‖2 ≤ 1, re(x) ≥ −X,
k > d, and n > e are chosen.

Implementation

1. Execute procedure III:67 on 〈X〉 and let 〈a1,
p1〉 receive.

2. Execute procedure III:70 on 〈X〉 and let 〈a2,
p2〉 receive.

3. Execute procedure III:39 on 〈max(a1, a2)〉 and
let 〈a3, e, p3〉 receive.

4. Execute procedure III:69 on 〈X〉 and let 〈a4,
p4〉 receive.

5. Execute procedure III:66 on 〈X〉 and let 〈a, d,
p5〉 receive.

6. Let c = a4a3.

7. Let p(x, n, k) be the following procedure:

(a) Show that ‖n((1 + x)
1
n

k − 1)‖2 ≤ a1
2 using

procedure p1.

(b) Show that ‖lnk(1 + x)‖2 ≤ a2
2 using proce-

dure p2.

(c) Show that ‖lnk(1 +x)−n((1 +x)
1
n

k −1)‖2 ≤
(a4n )2 using procedure p4.

(d) Now using procedures p3, p5, show that
expn(lnk(1 + x))

i. ≡ expn(n((1 + x)
1
n

k − 1))

A. (err a3(lnk(1 + x)− n((1 + x)
1
n

k − 1)))

B. (err a3 · a4n )

ii. ≡ 1 + x (err an
k )

(e) Hence show that expn(lnk(1 + x)) ≡ 1 +
x (err a3a4

n + an
k ) (err c

n + an
k ).

8. Yield the tuple 〈a, c, d, e, p〉.
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Chapter 12

Gregory-Leibniz Series

Declaration III:19(3.33)

The notation τn, where n is a positive integer, will
be used as a shorthand for 8 im(lnn(1 + i)).

Procedure III:72(3.47)

Objective

Choose a positive integer k. The objective of
the following instructions is to show that τk =

8
∑[0:b k2 c]
r

(−1)r

2r+1 .

Implementation

1. Using declaration III:19, show that τk

(a) = 8 im(
∑[1:k]
r

(−1)r−1

r ir)

(b) = 8 im(
∑[0:b k2 c]
r

(−1)2r

2r+1 i
2r+1)

(c) = 8
∑[0:b k2 c]
r

i2r

2r+1

(d) = 8
∑[0:b k2 c]
r

(−1)r

2r+1 .

Procedure III:73(3.49)

Objective

The objective of the following instructions is to con-
struct positive rational numbers a, b such that a ≥ 4,
and a procedure, p(n), to show that τn ≥ a when a
positive integer n ≥ b is chosen.

Implementation

1. Let a = 16
3 .

2. Show that a ≥ 4.

3. Let b = 4.

4. Let p(n) be the following procedure:

(a) Let d = n div 4.

(b) Let g = n mod 4.

(c) Hence show that n = 4d+ g.

(d) If g = 0 or g = 1, then do the following:

i. Using procedure III:72, show that τn

A. = 8
∑[0:b 4d+g

2 c]
r

(−1)r

2r+1

B. = 8
∑[0:2d]
r

(−1)r

2r+1

C. = 8(1− 1
3 +

∑[2:2d]
r

(−1)r

2r+1 )

D. = 16
3 + 8

∑[1:d]
r ( 1

4r+1 −
1

4r+3 )

E. ≥ 16
3 .

(e) Otherwise do the following:

i. Show that g = 2 or g = 3.

ii. Hence show that τn

A. = 8
∑[0:b 4d+g

2 c]
r

(−1)r

2r+1

B. = 8
∑[0:2d+1]
r

(−1)r

2r+1

C. = 8(1− 1
3 +

∑[0:2d]
r

(−1)r

2r+1 + (−1)2d

4d+1 )

D. 16
3 + 8

∑[1:d]
r ( 1

4r+1 −
1

4r+3 ) + 8
4d+1

E. ≥ 16
3 .

5. Yield the tuple 〈a, b, p〉.
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Procedure III:74(3.50)

Objective

The objective of the following instructions is to con-
struct rational numbers a, b such that a ≥ 4 and
a2 < 48, and a procedure, p(n), to show that τn ≤ a
when a positive integer n such that n ≥ b is chosen.

Implementation

1. Let a = 2104
315 .

2. Show that a ≥ 4.

3. Show that a2 = 4426816
99225 < 48.

4. Let b = 10.

5. Let p(n) be the following procedure:

(a) Let d = n div 4.

(b) Let g = n mod 4.

(c) Hence verify that n = 4d+ g.

(d) If g = 0 or g = 1, then do the following:

i. Show that τn

A. = 8
∑[0:bn2 c]
r

(−1)r

2r+1

B. = 8
∑[0:5]
r

(−1)r

2r+1 + 8
∑[5:b 4d+g

2 c]
r

(−1)r

2r+1

C. = a+ 8
∑[5:2d]
r

(−1)r

2r+1

D. = a+ 8
∑[5:2d−1]
r

(−1)r

2r+1 + 8(−1)2d−1

4d−1

E. = a− 8
∑[3:d]
r ( 1

4r−1 −
1

4r+1 )− 8
4d−1

F. ≤ a.

(e) Otherwise do the following:

i. Show that g = 2 or g = 3.

ii. Hence show that τn

A. = 8
∑[0:bn2 c]
r

(−1)r

2r+1

B. = 8
∑[0:5]
r

(−1)r

2r+1 + 8
∑[5:b 4d+g

2 c]
r

(−1)r

2r+1

C. = a+ 8
∑[5:2d+1]
r

(−1)r

2r+1

D. = a− 8
∑[2:d]
r ( 1

4r+3 −
1

4r+5 )

E. ≤ a.

6. Yield the tuple 〈a, b, p〉.

Procedure III:75(3.53)

Objective

The objective of the following instructions is to con-
struct positive rational numbers a, c, d, e, and a pro-
cedure p(n, k) to show that expn( 1

4τki) ≡ i (err an
k +

c
n ) when integers k, n such that n > e and k > d are
chosen.

Implementation

1. Execute procedure III:70 on 〈0〉 and let 〈a1,
p1〉 receive.

2. Execute procedure III:37 on 〈a1〉 and let 〈a2,
b2, p2〉 receive.

3. Execute procedure III:35 on 〈a1〉 and let 〈a3,
b3, p3〉 receive.

4. Execute procedure III:71 on 〈0〉 and let 〈a4,
c4, d, e4, p4〉 receive.

5. Let a = 2a4
a3

.

6. Let c = 2c4
a3

+ a2.

7. Let e = max(b2, b3, e4).

8. Let p(n, k) be the following procedure:

(a) Show that ‖lnk(1 + i)‖2 ≤ a1
2 using proce-

dure p1.

(b) Hence using procedures p2, p3, p4, show that
expn( 1

4τki)

i. = expn(2 im(lnk(1 + i))i)

ii. = expn(lnk(1 + i)− (lnk(1 + i))−)

iii. ≡ expn(lnk(1+i))
expn((lnk(1+i))−) (err a2

n )

iv. ≡ 1+i
expn((lnk(1+i))−) (err 1

a3
(a4nk + c4

n ))

v. = 1+i
(expn(lnk(1+i)))−

vi. ≡ 1+i
(1+i)−

A. (err
(1+i)(

a4n
k +

c4
n )

(expn(lnk(1+i)))−·(1+i)− )

B. (err 1
a3

(a4nk + c4
n ))

vii. = i.

(c) Hence show that expn( 1
4τki) ≡ i (err a2

n +
2
a3

(a4nk + c4
n )) (err an

k + c
n ).

9. Yield the tuple 〈a, c, d, e, p〉.
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Procedure III:76(3.54)

Objective

The objective of the following instructions is to con-
struct positive rational numbers a, c, d, e such that
b > 1, and a procedure, p(n, k), to show that
expn(− 1

4τki) ≡ −i (err an
k + c

n ) when integers k, n
such that n > e and k > d are chosen.

Implementation

Implementation is analogous to that of procedure
III:75.

Procedure III:77(mon2608190753)

Objective

Choose a rational number X ≥ 0 and an integer
K ≥ 0. The objective of the following instructions
is to construct a rational number a, and a procedure
p(x, y, k) to show that xk ≡ yk (err a(x− y)) when
two complex numbers x, y and a non-negative inte-
ger k such that ‖x‖2 ≤ X2, ‖y‖2 ≤ X2, and k ≤ K
are chosen.

Implementation

1. Let a = K max(1, X)K−1.

2. Let p(x, y, k) be the following procedure:

(a) Show that xk ≡ yk

i. (err yk − xk)

ii. (err (y − x)
∑[0:k]
r xryk−1−r)

iii. (err (y − x)
∑[0:k]
r Xk−1)

iv. (err (y − x)KXk−1)

v. (err a(y − x))

3. Yield the tuple 〈a, p〉.

Procedure III:78(3.55)

Objective

Choose an integer K ≥ 0. The objective of the fol-
lowing instructions is to construct rational numbers
a, b, c, d, and a procedure, p(n,m, k), to show that
expn(k4 τmi) ≡ ik (err an

m + b
n ) when a non-negative

integer k and two positive integers n,m such that
k ≤ K, n > c, and m > d are chosen.

Implementation

1. Execute procedure III:74 and let 〈a1, d, p1〉 re-
ceive.

2. Execute procedure III:38 on 〈(a14 )2〉 and let
〈a2, b2, p2〉 receive.

3. Execute procedure III:75 and let 〈a3, b3, c3, p3〉
receive.

4. Execute procedure III:34 on 〈(a14 )2〉 and let
〈a4, b4, p4〉 receive.

5. Execute procedure III:77 on 〈max(1, a14 ),K〉
and let 〈a5, p5〉 receive.

6. Let a = a3a5.

7. Let b = a2K + b3a5.

8. Let c = max(b2, b4, c3).

9. Let p(n, k,m) be the following procedure:

(a) Show that τm ≤ a1 using procedure p1.

(b) Hence show that ‖ 1
4τmi‖

2 = ‖ 1
4τm‖

2 ≤
(a14 )2.

(c) Hence show that ‖expn( 1
4τmi)−i‖

2 ≤ (a3nm +
b3
n )2 using procedure p3.

(d) Hence show that ‖expn( 1
4τmi)‖

2 ≤ a4 using
procedure p4.

(e) Hence using procedures p2, p5, show that
expn(k4 τmi)

i. ≡ expn( 1
4τmi)

k

A. (err a2k
n )

B. (err a2K
n )

ii. ≡ ik

A. (err a5(expn( 1
4τmi)− i))

B. (err a5(a3nm + b3
n ))

(f) Hence show that expn(k4 τmi) ≡
ik (err a2K

n + a5(a3nm + b3
n )) (err an

m + b
n ).

10. Yield the tuple 〈a, b, c, d, p〉.
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Procedure III:79(3.56)

Objective

Choose an integer K ≥ 0. The objective of the fol-
lowing instructions is to construct rational numbers
a, b, c, d, and a procedure, p(n,m, k), to show that
expn(k4 τmi) ≡ i

k (err an
m + b

n ) when an integer k and
two positive integers n,m such that |k| ≤ K, n > c,
and m > d are chosen.

Implementation

Implementation is an extension of that of procedure
III:78 using procedure III:76.

Procedure III:80(3.57)

Objective

Choose an integer K ≥ 0. The objective of the fol-
lowing instructions is to construct rational numbers
a, b, c, d, and a procedure, p(n,m, k), to show that

cosn(k4 τm) ≡ ik+(−i)k
2 (err an

m + b
n ) when an integer

k and two positive integers n,m such that |k| ≤ K,
n > c, and m > d are chosen.

Implementation

1. Execute procedure III:79 on 〈K〉 and let 〈a, b,
c, d, q〉 receive.

2. Let p(n,m, k) be the following procedure:

(a) Using procedure q, show that cosn(k4 τm)

i. =
expn( k

4 τmi)+expn(− k
4 τmi)

2

ii. =
expn( k

4 τmi)

2 +
expn(− k

4 τmi)

2

iii. ≡ ik

2 +
expn(− k

4 τmi)

2 (err 1
2 (anm + b

n ))

iv. ≡ ik

2 + i−k

2 (err 1
2 (anm + b

n ))

v. = ik+i−k

2 .

(b) Hence show that cosn(k4 τm) ≡
ik+i−k

2 (err an
m + b

n ).

3. Yield the tuple 〈a, b, c, d, p〉.

Procedure III:81(3.58)

Objective

Choose an integer K ≥ 0. The objective of the fol-
lowing instructions is to construct rational numbers

a, b, c, d, and a procedure, p(n,m, k), to show that

sinn(k4 τm) ≡ ik−(−i)k
2i (err an

m + b
n ) when an integer

k and two positive integers n,m such that |k| ≤ K,
n > c, and m > d are chosen.

Implementation

Implementation is analogous to that of procedure
III:80.

Procedure III:82(3.59)

Objective

Choose two integers X ≥ 0,K ≥ 0. The objective
of the following instructions is to construct rational
numbers a, b, c, d, and a procedure, p(x, n,m, k), to
show that expn(x+ k

4 τmi) ≡ i
k expn(x) (err an

m + b
n )

when an integer k and two positive integers n,m
such that ‖x‖2 ≤ X, |k| ≤ K, n > c, and m > d are
chosen.

Implementation

1. Execute procedure III:74 and let 〈a1, b1, p1〉 re-
ceive.

2. Let H = max(X, Ka14 ).

3. Execute procedure III:36 on 〈H〉 and let 〈a2,
b2, p2〉 receive.

4. Execute procedure III:34 on 〈X〉 and let 〈a3,
b3, p3〉 receive.

5. Execute procedure III:79 on 〈K〉 and let 〈a4,
b4, c4, d4, p4〉 receive.

6. Let a = a3a4.

7. Let b = a2H
2 + a3b4.

8. Let c = max(b2, b3, c4).

9. Let d = max(b1, d4).

10. Let p(x, n, k,m) be the following procedure:

(a) Show that τm ≤ a1 using procedure p1.

(b) Hence show that ‖k4 τmi‖
2 = (kτm4 )2.

(c) Hence using procedures p2, p3, p4, show that
expn(x+ k

4 τmi)

i. ≡ expn(k4 τmi) expn(x) (err a2H
2

n )

ii. ≡ ik expn(x) (err a3(a4nm + b4
n ))
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(d) Hence show that expn(x + k
4 τmi) ≡

ik expn(x) (err a2H
2

n +a3(a4nm + b4
n )) (err an

m +
b
n ).

11. Yield the tuple 〈a, b, c, d, p〉.

Procedure III:83(3.89)

Objective

Choose a positive integer K. The objective of the
following instructions is to construct rational num-
bers a, b, c, d, and a procedure, p(n,m, k), to show
that expn( kK τmi)

K ≡ 1 (err an
m + b

n ) when an integer
k and positive integers n,m such that 0 ≤ k < K,
n ≥ c, and m > d are chosen.

Implementation

1. Execute procedure III:74 and let 〈a1, b1, p1〉 re-
ceive.

2. Execute procedure III:38 on 〈Ka1〉 and let 〈a2,
b2, p2〉 receive.

3. Execute procedure III:79 on 〈4K〉 and let 〈a3,
b3, c3, d3, p3〉 receive.

4. Let a = a3.

5. Let b = a2K + b3.

6. Let c = max(b2, c3).

7. Let d = max(b1, d3).

8. Let p(n,m, k) be the following procedure:

(a) Show that τm ≤ a1 using procedure p1.

(b) Hence show that ‖K k
K τmi‖ = ‖kτm‖2 ≤

(Ka1)2.

(c) Now using procedures p2, p3, show that
expn( kK τmi)

K

i. ≡ expn(K k
K τmi) (err a2K

n )

ii. = expn( 4k
4 τmi)

iii. ≡ i4k (err a3n
m + b3

n )

(d) Hence show that expn( kK τmi)
K ≡

i4k (err a2K
n + a3n

m + b3
n ) (err an

m + b
n ).

9. Yield the tuple 〈a, b, c, d, p〉.

Figure III:1

1

i

exp30( 0
10τ100i)

exp30( 1
10τ100i)

exp30( 2
10τ100i)exp30( 3

10τ100i)

exp30( 4
10τ100i)

exp30( 5
10τ100i)

exp30( 6
10τ100i)

exp30( 7
10τ100i)

exp30( 8
10τ100i)

exp30( 9
10τ100i)

A plot of the list of complex numbers

exp30( [0:11]
10 τ100i). Notice that when

measurements are done relative to the
complex number 1, exp30( 1

10τ100i) is
roughly 1

10
th of a revolution, and also

that each complex number has an an-
gle that is roughly an integral multiple
of that of exp30( 1

10τ100i).

Procedure III:84(3.90)

Objective

Choose a two rationals M,N such that 0 < M
and N2 < 12. The objective of the following in-

structions is to construct rational numbers a, b such
that a > 0, and a procedure, p(x, n), to show that
‖cosn(x)−1‖2 ≥ a2 when a rational number x and a
positive integer n such that M ≤ |x| ≤ N and n > b
are chosen.
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Implementation

1. Let a = M2

4 (1− N2

12 ).

2. Show that a > 0.

3. Let b = 4.

4. Let p(x, n) be the following procedure:

(a) Using procedure III:41, show that (cosn(x)−
1)2

i. = ( 1
2 ((1 + xi

n )n + (1− xi
n )n)− 1)2

ii. = ( 1
2 (
∑[0:n+1]
r

nr

r! ( xn )rir+
∑[0:n+1]
r

nr

r! ( xn )r(−i)r)−
1)2

iii. = (
∑[0:bn2 c+1]
r

n2r

(2r)! (
x
n )2r(−1)r − 1)2

iv. = (
∑[1:bn2 c+1]
r

n2r

(2r)! (
x
n )2r(−1)r)2

v. = (
∑[1:b

bn
2
c

2 c+1]
r (− n4r−2

(4r−2)! (
x
n )4r−2 +

n4r

(4r)! (
x
n )4r) − n

2bn
2
c

(2bn2 c)!
( xn )2bn2 c[bn2 c mod 2 =

1])2

vi. ≥ (
∑[1:b

bn
2
c

2 c+1]
r

n4r−2

(4r−2)! (
x
n )4r−2(−1 +

(n−4r+2)2

(4r)2 ( xn )2))2

vii. ≥ (
∑[1:b

bn
2
c

2 c+1]
r

n4r−2

(4r−2)! (
x
n )4r−2(−1 +

1
(4r)2 (x)2))2

viii. ≥ (
∑[1:b

bn
2
c

2 c+1]
r

n4r−2

(4r−2)! (
x
n )4r−2(−1 +

1
12x

2))2

ix. ≥ (
∑[1:b

bn
2
c

2 c+1]
r

n4r−2

(4r−2)! (
x
n )4r−2(−1 +

N2

12 ))2

x. ≥ (n
2

2 ( xn )2(−1 + N2

12 ))2

xi. ≥ ( 1
4x

2(−1 + N2

12 ))2

xii. ≥ (M
2

4 (−1 + N2

12 ))2

xiii. = a2

5. Yield the tuple 〈a, b, p〉.

Procedure III:85(3.60)

Objective

Choose a positive integer K. The objective of the
following instructions is to construct rational num-
bers a, b, c such that a > 0, and a procedure, p(n,

m, k), to show that ‖expn( kK τmi) − 1‖2 ≥ a2 when
an integer k and positive integers n,m such that
0 < |k| ≤ K

2 , n > b, and m > c are chosen.

Implementation

1. Execute procedure III:74 and let 〈a1, c, p1〉 re-
ceive.

2. Show that (a12 )2 < 12.

3. Execute procedure III:73 and let 〈a2, p2〉 re-
ceive.

4. Show that a2 > 0.

5. Execute procedure III:84 on 〈a2K ,
a1
2 〉 and let

〈a, b, p3〉 receive.

6. Show that a > 0.

7. Let p(n,m, k) be the following procedure:

(a) Show that 1
K ≤

|k|
K ≤

1
2 given that 1 ≤ |k| ≤

K
2 .

(b) Hence show that 0 < a2
K ≤

1
K τm ≤

|k|
K τm ≤

1
2τm ≤

a1
2 using procedures p1 and p2.

(c) Hence show that (cosn( kK τm)− 1)2 ≥ a2 us-
ing procedure p3.

(d) Using procedure III:41, show that
‖expn( kK τmi)− 1‖2

i. ≥ re(expn( kK τmi)− 1)2

ii. = (cosn( kK τm)− 1)2

iii. ≥ a2

8. Yield the tuple 〈a, b, c, p〉.

Procedure III:86(3.61)

Objective

Choose a positive integer K. The objective of the
following instructions is to construct rational num-
bers a, b, c such that a > 0, and a procedure, p(n,m,
j, k), to show that ‖expn( kK τmi)− expn( jK τmi)‖

2 ≥
a2 when positive integers n, j, k,m such that −K <
j ≤ k < K, 0 < k − j ≤ K

2 , n ≥ b, and m ≥ c are
chosen.
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Implementation

1. Execute procedure III:74 and let 〈a1, b1, p1〉 re-
ceive.

2. Execute procedure III:35 on 〈a1〉 and let 〈a2,
b2, p2〉 receive.

3. Execute procedure III:85 on 〈K〉 and let 〈a3,
b3, c3, p3〉 receive.

4. Execute procedure III:36 on 〈a1〉 and let 〈a4,
b4, p4〉 receive.

5. Let a = 1
2a2a3.

6. Let b = max( 2a4a1
2

a2a3
, b3, b4, b2).

7. Let c = max(b1, c3).

8. Let p(n,m, j, k) be the following procedure:

(a) Show that ‖ jK ‖
2 < 1

i. given that −1 < j
K < 1

ii. given that −K < j < K.

(b) Hence show that ‖ jK τmi‖
2 = ‖ jK ‖

2‖τm‖2 ≤
‖τm‖2 ≤ a1

2 using procedure p1.

(c) Hence show that ‖expn( jK τmi)‖
2 ≥ a2

2 > 0
using procedure p2.

(d) Hence show that ‖expn(k−jK τmi) − 1‖2 ≥
a3

2 > 0 using procedure p3.

(e) Show that ‖k−jK τmi‖2 ≤ ‖k−jK ‖
2‖τm‖2 ≤

‖τm‖2 ≤ a1
2 given that 0 < k−j

K ≤ 1
2 .

(f) Show that n ≥ b ≥ 2a4a1
2

a2a3
.

(g) Hence show that ‖expn(k−jK τmi) expn( jK τmi)−
expn(k−jK τmi+

j
K τmi)‖

2 ≤ a4
2‖ k−j

K τmi‖2‖ j
K τmi‖

2

n2 ≤
a4

2a1
4

n2 ≤ (a2a32 )2 using procedure p4.

(h) Hence using procedure III:19, show that
‖expn( kK τmi)− expn( jK τmi)‖

2

i. = ‖expn(k−jK τmi + j
K τmi) −

expn(k−jK τmi) expn( jK τmi)+expn(k−jK τmi) expn( jK τmi)−
expn( jK τmi)‖

2

ii. = ‖expn( jK τmi)(expn(k−jK τmi) −
1) − (expn(k−jK τmi + j

K τmi) −
expn(k−jK τmi) expn( jK τmi))‖

2

iii. ≥ (a2a3 − a2a3
2 )2

iv. ≥ a2.

9. Yield the tuple 〈a, b, c, p〉.

Procedure III:87(3.62)

Objective

Choose a positive integer K. The objective of the
following instructions is to construct rational num-
bers a, b, c such that a > 0, and a procedure, p(n,m,
j, k), to show that ‖expn( kK τmi)− expn( jK τmi)‖

2 ≥
a2 when positive integers n, j, k,m such that 0 ≤
j ≤ k < K, K

2 ≤ k − j < K, n ≥ b, and m
n ≥ c are

chosen.

Implementation

1. Execute procedure III:86 on 〈K〉 and let 〈a1,
b1, c1, p1〉 receive.

2. Execute procedure III:74 and let 〈a2, b2, p2〉 re-
ceive.

3. Execute procedure III:82 on 〈a2, 4〉 and let 〈a3,
b3, c3, d3, p3〉 receive.

4. Let a = 1
2a1.

5. Let b = max( 4b3
a1
, b1, c3).

6. Let c = max( 4a3
a1
, c1b ,

b2
b ,

d3
b ).

7. Let p(n,m, j, k) be the following procedure:

(a) Show that −K2 ≤ k −K < j < K
2 .

(b) Also show that 0 < j − (k −K) ≤ K
2 .

(c) Show that m ≥ cn ≥ c1
b b = c1.

(d) Hence show that ‖expn( jK τmi) −
expn(k−KK τmi)‖2 ≥ a1

2 using procedure p1.

(e) Show that m ≥ cn ≥ b2
b b = b2.

(f) Hence show that τm ≤ a2 using procedure
p2.

(g) Hence show that ‖ kK τmi‖
2 = ‖ kK ‖

2‖τm‖2 ≤
‖τm‖2 ≤ a2

2.

(h) Also show that m ≥ cn ≥ d3
b b = d3.

(i) Hence show that ‖i−4 expn( kK τmi) −
expn( kK τmi−

4
4τmi)‖

2 ≤ (a3nm + b3
n )2 ≤ (a12 )2

using procedure p3.

(j) Now show that ‖expn( kK τmi) −
expn( jK τmi)‖

2

115



i. = ‖expn( kK τmi) − expn( kK τmi − τmi) +

expn(k−KK τmi)− expn( jK τmi)‖
2

ii. ≥ 1
2‖expn(k−KK τmi) − expn( jK τmi)‖

2 −
‖expn( kK τmi)− expn( kK τmi− τmi)‖

2

iii. ≥ 1
2a1

2 − (a12 )2

iv. ≥ a2.

8. Yield the tuple 〈a, b, c, p〉.

Procedure III:88(3.63)

Objective

Choose a positive integer K. The objective of the
following instructions is to construct rational num-
bers a, b, c such that a > 0, and a procedure, p(n,m,
j, k), to show that ‖expn( kK τmi)− expn( jK τmi)‖

2 ≥
a2 when positive integers n, j, k,m such that 0 ≤
j ≤ k < K, 0 < k − j < K, n ≥ b, and m

n ≥ c are
chosen.

Implementation

1. Execute procedure III:86 on 〈K〉 and let 〈a1,
b1, c1, p1〉 receive.

2. Execute procedure III:87 on 〈K〉 and let 〈a2,
b2, c2, p2〉 receive.

3. Let a = min(a1, a2).

4. Show that a > 0.

5. Let b = max(b1, b2).

6. Let c = max( c1b , c2).

7. Let p(n,m, j, k) be the following procedure:

(a) If k − j ≤ K
2 , then do the following:

i. Show that m ≥ cn ≥ c1
b b = c1.

ii. Hence show that ‖expn( kK τmi) −
expn( jK τmi)‖

2 ≥ a1 ≥ a using proce-
dure p1.

(b) Otherwise if k − j > K
2 , then do the follow-

ing:

i. Show that ‖expn( kK τmi)−expn( jK τmi)‖
2 ≥

a2 ≥ a using procedure p2.

8. Yield the tuple 〈a, b, c, p〉.

Declaration III:20(3.34)

The phrase ”complex polynomial” will be used to
indicate that the declarations and procedures per-
taining to polynomials are being used but with the
provison that all uses of rational numbers therein
are substituted with uses of complex numbers.

Procedure III:89(3.64)

Objective

Choose a positive integer K. The objective of the
following instructions is to construct rational num-
bers a, b, c, d, and a procedure, p(n,m), to construct
a list of complex numbers z and a list of complex
polynomials q such that,

1. zk = expn(K−k−1
K τmi) for k ∈ [0 : K]

2. qK = λK − 1

3. qK−1 =
∑[0:K]
r λr

4. qk+1 = (λ− zk)qk + Λ(qk+1, zk) for k ∈ [0 : K]

5. (qk)deg(qk) = 1 for k ∈ [0 : K + 1]

6. Λ(qk, zj) ≡ 0 (err an
m + b

n ) for j ∈ [0 : k], for
k ∈ [0 : K + 1]

when two positive integers n,m such that n > c and
m
n > d are chosen.

Implementation

1. Execute procedure III:83 on 〈K〉 and let 〈a1,
b1, c1, d1, p1〉 receive.

2. Execute procedure III:88 on 〈K〉 and let 〈a2,
b2, c2, p2〉 receive.

3. Let a = max(1, 2
a2

)Ka1.

4. Let b = max(1, 2
a2

)Kb1.

5. Let c = max(c1, b2).

6. Let d = max(d1, c2).

7. Let p(n,m) be the following procedure:

(a) Let qK = λK − 1.

(b) For k ∈ [K : 0], do the following:

i. Let zk = expn(K−k−1
K τmi).

ii. Now show that ‖Λ(qK , zk)‖2 ≤ (a1nm +
b1
n )2 using procedure p1.

116



(c) For k ∈ [K : 0], do the following:

i. Let qk = qk+1 div(λ− zk).

ii. Let rk = qk+1 mod (λ− zk).

iii. Show that deg(rk) = 0 given that
deg(rk) < deg(λ− zk) = 1.

iv. Show that 1 = (qk+1)deg(qk+1) = ((λ −
zk)qk + rk)deg(qk+1) = (qk)deg(qk) given
that qk+1 = (λ− zk)qk + rk.

v. Show that qk+1 = (λ − zk)qk + Λ(qk+1,
zk) given that Λ(qk+1, zk) = Λ(λ − zk,
zk)Λ(qk, zk) + Λ(rk, zk) = (zk − zk)Λ(qk,
zk) + rk = rk.

vi. Execute the subprocedure III:90:0
on 〈k, qk+1, z〉.

(d) Now using (cv), verify that (λ−1)
∑[0:K]
r λr

i. = qK

ii. = (λ− zK−1)qK−1 + Λ(qK , zK−1)

iii. = (λ− 1)qK−1 + Λ(λK − 1, 1)

iv. = (λ− 1)qK−1.

(e) Hence show that
∑[0:K]
r λr = qK−1.

(f) Yield the tuple 〈z, q〉.

8. Yield the tuple 〈a, b, c, d, p〉.

Subprocedure III:90:0

Objective Choose a non-negative integer k, a
complex polynomial qk+1, and a list of complex
numbers z such that zj = expn( jK τmi) and Λ(qk+1,

zj) ≡ 0 (err ( 2
a2

)K−(k+1)(a1nm + b1
n )) for j ∈ [k+1 : 0].

Let qk = qk+1 div(λ − zk). The objective of the
following instructions is to show that Λ(qk, zj) ≡
0 (err ( 2

a2
)K−k(a1nm + b1

n )) (err an
m + b

n ) for j ∈ [k : 0].

Implementation

1. For j ∈ [k : 0], do the following:

(a) Show that Λ(qk+1, zj)−Λ(qk+1, zk) = (zj −
zk)Λ(qk, zj) given that Λ(qk+1, zj) = Λ(λ −
zk, zj)Λ(qk, zj) + Λ(qk+1, zk).

(b) Show that ‖zj − zk‖2 ≥ a2
2 using procedure

p2(n,m,min(j, k),max(j, k)).

(c) Hence show that a2
2‖Λ(qk, zj)‖2

i. ≤ ‖zj − zk‖2‖Λ(qk, zj)‖2

ii. = ‖(zj − zk)Λ(qk, zj)‖2

iii. = ‖Λ(qk+1, zj)− Λ(qk+1, zk)‖2

iv. ≤ (( 2
a2

)K−k−1(a1nm + b1
n )+( 2

a2
)K−k−1(a1nm +

b1
n ))2

v. = (2( 2
a2

)K−k−1(a1nm + b1
n ))2

vi. = a2
2(( 2

a2
)K−k(a1nm + b1

n ))2.

(d) Hence show that ‖Λ(qk, zj)‖2 ≤
(( 2
a2

)K−k(a1nm + b1
n ))2 ≤ (anm + b

n )2.

Procedure III:90(3.65)

Objective

Choose a rational number X and a positive in-
teger K. The objective of the following instruc-
tions is to construct rational numbers a, b, c, d, and

a procedure, p(x, n,m), to show that
∑[0:K]
r xr ≡∏[1:K]

r (x− expn( rK τmi)) (err an
m + b

n ) when a com-
plex number x and positive integers n,m such that
n > c, m

n > d, and ‖x‖2 ≤ X are chosen.

Implementation

1. Execute procedure III:89 on 〈K〉 and let 〈a1,
b1, c1, d1, p1〉 receive.

2. Execute procedure III:74 and let 〈a2, b2, p2〉 re-
ceive.

3. Execute procedure III:34 on 〈a2〉 and let 〈a3,
b3, p3〉 receive.

4. Let l =
∑[0:K−1]
k

∏[k+1:K−1]
j (X + a3).

5. Let a = a1l.

6. Let b = b1l.

7. Let c = max(c1, b3).

8. Let d = max(d1, b2).

9. Let p(x, n,m) be the following procedure:

(a) Show that τm ≤ a2 using procedure p2.

(b) Execute procedure p1 on 〈n,m〉 and let 〈z, t〉
receive.

(c) For j ∈ [1 : K], do the following:

i. Show that ‖ jK τmi‖
2 = ‖ jK ‖

2‖τm‖2 ≤
‖τm‖2 ≤ a2.
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ii. Hence show that ‖zj‖2 = ‖expn( jK τmi)‖
2 ≤

a3 using procedure p3.

(d) Hence show that ‖
∑[0:K]
r xr −

∏[1:K]
r (x −

zr)‖2

i. = ‖Λ(
∑[0:K]
r λr, x)−

∏[1:K]
r (x− zr)‖2

ii. = ‖Λ(tK−1, x)−
∏[1:K]
r (x− zr)‖2

iii. = ‖Λ(
∏[0:K−1]
j (λ− z′j) +

∑[0:K−1]
k Λ(tk+1,

z′k)
∏[k+1:K−1]
j (λ − z′j), x) −

∏[1:K]
r (x −

zr)‖2

iv. = ‖
∏[0:K−1]
j (x − z′j) +

∑[0:K−1]
k Λ(tk+1,

z′k)
∏[k+1:K−1]
j (x− z′j)−

∏[1:K]
r (x− zr)‖2

v. = ‖
∑[0:K−1]
k Λ(tk+1, z

′
k)
∏[k+1:K−1]
j (x −

z′j)‖2

vi. ≤ (
∑[0:K−1]
k (a1nm + b1

n )
∏[k+1:K−1]
j (X +

a3))2

vii. = ((a1nm + b1
n )
∑[0:K−1]
k

∏[k+1:K−1]
j (X +

a3))2

viii. = (anm + b
n )2.

10. Yield the tuple 〈a, b, c, d, p〉.

Procedure III:91(3.66)

Objective

Choose a rational number X and a positive in-
teger K. The objective of the following instruc-
tions is to construct rational numbers a, b, c, d, and
a procedure, p(x, n,m), to show that xK − 1 ≡∏[0:K]
r (x− expn( rK τmi)) (err an

m + b
n ) when a com-

plex number x and positive integers n,m such that
n > c, m

n > d, and ‖x‖2 ≤ X are chosen.

Implementation

1. Execute procedure III:90 on 〈X,K〉 and let
〈a1, b1, c, d, p1〉 receive.

2. Let a = (X + 1)a1.

3. Let b = (X + 1)b1.

4. Let p(x, n,m) be the following procedure:

(a) Show that ‖
∑[0:K]
r xr −

∏[1:K]
r (x −

expn( rK τmi))‖
2 ≤ (a1nm + b1

n )2 using pro-
cedure p1.

(b) Hence show that ‖xK − 1 −
∏[0:K]
r (x −

expn( rK τmi))‖
2

i. = ‖(x − 1)
∑[0:K]
r xr − (x − 1)

∏[1:K]
r (x −

expn( rK τmi))‖
2

ii. = ‖x − 1‖2‖
∑[0:K]
r xr −

∏[1:K]
r (x −

expn( rK τmi))‖
2

iii. ≤ (X + 1)2(a1nm + b1
n )2

iv. = (anm + b
n )2.

5. Yield the tuple 〈a, b, c, d, p〉.

Procedure III:92(3.67)

Objective

Choose a rational number X and a positive integer
K. The objective of the following instructions is
to construct rational numbers a, b, c, d, and a pro-
cedure, p(x, n,m), to show that expK(x) − 1 ≡
x
∏[1:K]
r (1 − x

K(expn( r
K τmi)−1) ) (err an

m + b
n ) when a

complex number x and positive integers n,m such
that n > c, m

n > d, and ‖x‖2 ≤ X are chosen.

Implementation

1. Execute procedure III:91 on 〈1 + X
K ,K〉 and

let 〈a1, b1, c1, d1, p1〉 receive.

2. Execute procedure III:90 on 〈1,K〉 and let 〈a2,
b2, c2, d2, p2〉 receive.

3. Execute procedure III:88 on 〈K〉 and let 〈a3,
b3, c3, p3〉 receive.

4. Let l = X
K (1 + X

Ka3
)K−1.

5. Let a = a1 + la2.

6. Let b = b1 + lb2.

7. Let c = max(c1, c2, b3).

8. Let d = max(d1, d2, c3).

9. Let p(x, n,m) be the following procedure:

(a) Show that ‖1 + x
K ‖

2 ≤ (1 + X
K )2.

(b) Hence show that ‖(1+ x
K )K−1−

∏[0:K]
r (1+

x
K −expn( rK τmi))‖

2 ≤ (a1nm + b1
n )2 using pro-

cedure p1.

(c) Hence show that ‖K −
∏[1:K]
r (1 −

expn( rK τmi))‖
2 =

∑[0:K]
r 1r −

∏[1:K]
r (1 −

118



expn( rK τmi))‖
2 ≤ (a2nm + b2

n )2 using proce-
dure p2.

(d) For j ∈ [1 : K], do the following:

i. Show that ‖expn( jK τmi)−1‖2 ≥ a3
2 using

procedure p3.

ii. Let zj = K(expn( jK τmi)− 1).

(e) Hence show that ‖expK(x)−1−x
∏[1:K]
r (1−

x
zr

)‖2

i. = ‖expK(x) − 1 −
∏[0:K]
r (1 + x

K −
expn( rK τmi)) +

∏[0:K]
r (1 + x

K −
expn( rK τmi))− x

∏[1:K]
r (1− x

zr
)‖2

ii. = ‖expK(x) − 1 −
∏[0:K]
r (1 + x

K −
expn( rK τmi)) + x

K

∏[1:K]
r (1 + x

K −
expn( rK τmi))− x

∏[1:K]
r (1− x

zr
)‖2

iii. = ‖expK(x) − 1 −
∏[0:K]
r (1 +

x
K − expn( rK τmi)) + x

K

∏[1:K]
r (1 −

expn( rK τmi))
∏[1:K]
r (1− x

zr
)−x

∏[1:K]
r (1−

x
zr

)‖2

iv. = ‖(expK(x) − 1 −
∏[0:K]
r (1 +

x
K − expn( rK τmi))) + x

K

∏[1:K]
r (1 −

x
zr

)(
∏[1:K]
r (1− expn( rK τmi))−K)‖2

v. ≤ ((a1nm + b1
n )+ X

K (
∏[1:K]
r (1+ X

Ka3
))(a2nm +

b2
n ))2

vi. = ((a1nm + b1
n )+X

K (1+ X
Ka3

)K−1(a2nm + b2
n ))2

vii. = (anm + b
n )2.

10. Yield the tuple 〈a, b, c, d, p〉.
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Chapter 13

Differential Arithmetic

Procedure IV:0(tue2008191129)

Objective

Choose the following:

1. A procedure q1(x, n) to show that pn(x) ≡
0 (err a1) when a complex number x and a
positive integer n such that P (x) and n > c1
are chosen.

2. A procedure q2(x, n) to show that tn(x) ≡
0 (err a2)2 when a complex number x and a
positive integer n such that R(x) and n > c2
are chosen.

The objective of the following instructions is to con-
struct the following:

1. Rational numbers a3, b3.

2. A procedure q3(x, n) to show that pn(x) +
tn(x) ≡ 0 (err a3) when a complex number x
and a positive integer n such that P (x), R(x),
and n > b3 are chosen.

Implementation

1. Let a3 = a1 + a2.

2. Let b3 = max(c1, c2).

3. Let q3(x, n) be the following procedure:

(a) Show that pn(x) ≡ 0 (err a1) using proce-
dure q1.

(b) Show that tn(x) ≡ 0 (err a2) using proce-
dure q2.

(c) Hence show that pn(x) + tn(x) ≡ 0 (err a1 +
a2) (err a3).

4. Yield the tuple 〈a3, b3, q3〉.

Procedure IV:1(tue2008191139)

Objective

Choose the following:

1. A procedure q1(x, n) to show that pn(x) ≡
0 (err a1) when a complex number x and a
positive integer n such that P (x) and n > c1
are chosen.

2. A procedure q2(x, n) to show that tn(x) ≡
0 (err a2) when a complex number x and a
positive integer n such that R(x) and n > c2
are chosen.

The objective of the following instructions is to con-
struct the following:

1. Rational numbers a3, b3.

2. A procedure q3(x, n) to show that
pn(x)tn(x) ≡ 0 (err a3) when a complex num-
ber x and a positive integer n such that P (x),
R(x), and n > b3 are chosen.

Implementation

Implementation is analogous to that of procedure
IV:0.

Declaration IV:0(tue2008190516)

The notation {x}, where x is a complex number, will
be used as a shorthand for |re(x)|+ |im(x)|.
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Procedure IV:2(tue2008190655)

Objective

Choose a complex number a such that {a} = 0. The
objective of the following instructions is to show that
a = 0.

Implementation

1. Using declaration IV:0, show that |re(a)| +
|im(a)| = 0.

2. Hence show that re(a) = 0

(a) given that |re(a)| = 0

(b) given that 0 ≥ |re(a)| ≥ 0

(c) given that |im(a)| ≥ 0.

3. Also show that im(a) = 0

(a) given that |im(a)| = 0

(b) given that 0 ≥ |im(a)| ≥ 0

(c) given that |re(a)| ≥ 0.

4. Hence show that a = 0.

Procedure IV:3(tue2008190520)

Objective

Choose a complex number a and a rational number
b. The objective of the following instructions is to
show that {ba} = |b|{a}.

Implementation

1. Using declaration IV:0, show that {ba}

(a) = |re(ba)|+ |im(ba)|

(b) = |b re(a)|+ |b im(a)|

(c) = |b|(|re(a)|+ |im(a)|)

(d) = |b|{a}.

Procedure IV:4(tue2008190540)

Objective

Choose two complex numbers a, b. The objective of
the following instructions is to show that {a+ b} ≤
{a}+ {b}.

Implementation

1. Using declaration IV:0, show that {a+ b}

(a) = |re(a+ b)|+ |im(a+ b)|

(b) = |re(a) + re(b)|+ |im(a) + im(b)|

(c) ≤ |re(a)|+ |re(b)|+ |im(a)|+ |im(b)|

(d) = {a}+ {b}.

Procedure IV:5(tue2008190546)

Objective

Choose two complex numbers a, b. The objective
of the following instructions is to show that {ab} ≤
{a}{b}.

Implementation

1. Using procedure IV:4, show that {ab}

(a) = {(re(a) + im(b)i)b}

(b) = {re(a)b+ im(a)bi}

(c) ≤ {re(a)b}+ {im(a)b}

(d) = (|re(a)|+ |im(a)|){b}

(e) = {a}{b}.

Procedure IV:6(tue2008190632)

Objective

Choose a complex number a. The objective of the
following instructions is to show that ‖a‖2 ≤ {a}2.

Implementation

1. Using procedure III:18, show that ‖a‖2

(a) = ‖re(a) + im(a)i‖2

(b) ≤ (|re(a)|+ |im(a)|)2

(c) = {a}2.

Procedure IV:7(tue2008190639)

Objective

Choose a complex number a. The objective of the
following instructions is to show that {a}2 ≤ 2‖a‖2.
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Implementation

1. Show that 2‖a‖2 − {a}2

(a) = 2 re(a)2 + 2 im(a)2 − (|re(a)|+ |im(a)|)2

(b) = 2 re(a)2 + 2 im(a)2 − re(a)2 −
2|re(a)||im(a)| − im(a)2

(c) = re(a)2 − 2|re(a)||im(a)|+ im(a)2

(d) = (|re(a)| − |im(a)|)2

(e) ≥ 0.

2. Hence show that {a}2 ≤ 2‖a‖2.

Declaration IV:1(3.29)

The notation ∆z
x=y f(x), where x, z are complex

numbers such that z 6= 0 and f [x] is a function of x,

will be used as a shorthand for f(y+z)−f(y)
z .

Procedure IV:8(3.83)

Objective

Choose two functions f [x], g[x] and two complex
numbers y, z such that z 6= 0. The objective of the
following instructions is to show that ∆z

x=y(f(x) +
g(x)) = ∆z

x=y f(x) + ∆z
x=y g(x).

Implementation

1. Show that ∆z
x=y(f(x) + g(x))

(a) = (f(y+z)+g(y+z))−(f(y)+g(y))
z

(b) = f(y+z)−f(y)
z + g(y+z)−g(y)

z

(c) = ∆z
x=y f(x) + ∆z

x=y g(x).

Procedure IV:9(3.84)

Objective

Choose a functions f [x] and complex numbers a,
y, z such that z 6= 0. The objective of the fol-
lowing instructions is to show that ∆z

x=y(af(x)) =
a∆z

x=y f(x).

Implementation

1. Show that ∆z
x=y(af(x))

(a) = af(y+z)−af(y)
z

(b) = a f(y+z)−f(y)
z

(c) = a∆z
x=y f(x).

Procedure IV:10(mon1908191506)

Objective

Choose the following:

1. A procedure q0(x, n) to show that p′n(x) ≡
0 (err a0) when a complex number x and a
positive integer n such that P (x) and n > b0
are chosen.

2. A procedure q1(x, n, δ) to show that
∆+δ
y=xpn(y) ≡ p′n(x) (err a1

n + b1{δ}) when two
complex numbers x, δ and a positive integer n
such that P (x), n > b0, and 0 < ‖δ‖2 < c1

2

are chosen.

3. A procedure q2(x, n) to show that t′n(x) ≡
0 (err a2) when a complex number x and a
positive integer n such that R(x) and n > b2
are chosen.

4. A procedure q3(x, n, δ) to show that
∆+δ
y=xtn(y) ≡ t′n(x) (err a3

n + b3{δ}) when two
complex numbers x, δ and a positive integer n
such that R(x), n > b2, and 0 < ‖δ‖2 < c3

2

are chosen.

The objective of the following instructions is to con-
struct the following:

1. Rational numbers a4, b4, a5, b5, c5.

2. A procedure q4(x, n) to show that p′n(x) +
t′n(x) ≡ 0 (err a4) when a complex number x
and a positive integer n such that P (x), R(x),
and n > b4 are chosen.

3. A procedure q5(x, n, δ) to show that
∆+δ
y=x(pn(y)+ tn(y)) ≡ p′n(x)+ t′n(x) (err a5

n +
b5{δ}) when two complex numbers x, δ such
that P (x), R(x), n > b4, and 0 < ‖δ‖2 < c5.

Implementation

1. Let a5 = a1 + a3.

2. Let b5 = b1 + b3.

3. Let q5(x, n, δ) be the following procedure:

(a) Show that ∆+δ
y=xpn(y) ≡ p′n(x) (err a1

n +
b1{δ}) using procedure q1.

(b) Show that ∆+δ
y=xtn(y) ≡ t′n(x) (err a3

n +
b3{δ}) using procedure q3.

123



(c) Hence using procedure IV:8, show that
∆+δ
y=x(pn(y) + tn(y))

i. = ∆+δ
y=xpn(y) + ∆+δ

y=xtn(y)

ii. ≡ p′n(x) + ∆+δ
y=xtn(y) (err a1

n + b1{δ})

iii. ≡ p′n(x) + t′n(x) (err a3
n + b3{δ})

(d) Hence show that ∆+δ
y=x(pn(y) + tn(y)) ≡

p′n(x) + t′n(x) (err a5
n + b5{δ}).

4. Let q4(x, n) be the following procedure:

(a) Show that p′n(x) ≡ 0 (err a0) using proce-
dure q0.

(b) Show that t′n(x) ≡ 0 (err a2) using proce-
dure q2.

(c) Hence show that p′n(x) + t′n(x) ≡ 0 (err a0 +
a2).

5. Yield the tuple 〈a4, b4, a5, b5, c5, q4, q5〉.

Procedure IV:11(sat0308191134)

Objective

Choose the following:

1. A procedure q0(x, n) to show that p′n(x) ≡
0 (err a0) when a complex number x and a
positive integer n such that P (x), and n > b0
are chosen

2. A procedure q1(x, n, δ) to show that
∆+δ
y=xpn(y) ≡ p′n(x) (err a1

n + b1{δ}) when two
complex numbers x, δ and a positive integer n
such that P (x), n > b0, and 0 < ‖δ‖2 < c1

2

are chosen

3. A procedure q2(x, n) to show that t′n(x) ≡
0 (err a2) when a complex number x and a
positive integer n such that R(x), and n > b2
are chosen

4. A procedure q3(x, n, δ) to show that
∆+δ
y=xtn(y) ≡ t′n(x) (err a3

n + b3{δ}) when two
complex numbers x, δ and a positive integer n
such that R(x), n > b2, and 0 < ‖δ‖2 < c3

2

are chosen

5. A procedure q4(x, n) to show that P (tn(x))
when a complex number x and a positive in-
teger n such that R(x) and n > b2 are chosen

The objective of the following instructions is to con-
struct the following:

1. Rational numbers a5, b5, a6, b6, c6.

2. A procedure q5(x, n) to show that
p′n(tn(x))t′n(x) ≡ 0 (err a5) when a complex
number x such that R(x), and n > b5 are
chosen.

3. A procedure q6(x, n, δ) to show that
∆x+δ
y=xpn(tn(y)) ≡ p′n(tn(x))t′n(x) (err a6

n +
b6{δ}) when two complex numbers x, dx such
that R(x), n > b5, and 0 < ‖δ‖2 < c6

2 are
chosen.

Implementation

1. Let a5 = a0a2.

2. Let b5 = max(b0, b2).

3. Let a6 = a1a3 + a1a2 + a0a3.

4. Let b6 = a1b3 + b1a3 + 2b1b3c6 + b1a2 + a0b3.

5. Let c6 = min(c3,
c1

a3+2b3c3+a2
).

6. Let q5(x, n, δ) be the following procedure:

(a) Show that P (tn(x)) using procedure q4.

(b) If ∆+δ
y=xtn(y) = 0, then do the following:

i. Show that tn(x + δ) = tn(x) given that
tn(x+ δ)− tn(x) = 0δ = 0.

ii. Hence using procedures q0, q3, show that
∆+δ
y=xpn(tn(y))

A. = pn(tn(x+δ))−pn(tn(x))
δ

B. = pn(tn(x))−pn(tn(x))
δ

C. = 0

D. = ∆+δ
y=xtn(y)p′n(tn(x))

E. ≡ t′n(x)p′n(tn(x)) (err a0(a3n + b3{δ})).

(c) Otherwise do the following:

i. Using procedures q3, q4, show that
∆+δ
y=xtn(y)

A. ≡ t′n(x) (err a3
n + b3{δ})

B. ≡ 0 (err a2).

ii. Show that {δ} ≤ 2c6 ≤ 2c3 given that
{δ}2 ≤ 2‖δ‖2 ≤ 4c6

2.

iii. Show that tn(x+ δ)− tn(x)

A. = ∆+δ
y=xtn(y)δ
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B. ≡ 0δ (err (a3n + b3{δ}+ a2)c6) (err (a3 +
2b3c3 + a2)c6) (err c1).

iv. Hence using procedures q0, q1, show that

∆
tn(x+δ)−tn(x)
z=tn(x) pn(z)

A. ≡ p′n(tn(x)) (err a1
n + b1{δ})

B. ≡ 0 (err a0).

v. Hence show that ∆+δ
y=xpn(tn(y))

A. = ∆
tn(x+δ)−tn(x)
z=tn(x) pn(z) ·∆+δ

y=xtn(y)

B. ≡ p′n(tn(x))∆+δ
y=xtn(y) (err (a1n +

b1{δ})(a3n + b3{δ}+ a2))

C. ≡ p′n(tn(x))t′n(x) (err a0(a3n + b3{δ})).

(d) Hence show that ∆+δ
y=xpn(tn(y)) ≡

p′n(tn(x))t′n(x) (err a6
n + b6{δ}).

7. Let q6(x, n) be the following procedure:

(a) Show that P (tn(x)) using procedure q4.

(b) Show that p′n(tn(x)) ≡ 0 (err a0) using pro-
cedure q0.

(c) Show that t′n(x) ≡ 0 (err a2) using proce-
dure q2.

(d) Hence show that p′n(tn(x))t′n(x) ≡
0 (err a0a2) (err a5).

8. Yield the tuple 〈a5, b5, a6, b6, c6, q5, q6〉.

Procedure IV:12(tue2008191001)

Objective

Choose the following:

1. A complex number B

2. A procedure q1(x, n) to show that p′n(x) ≡
0 (err a1) when a complex number x and a
positive integer n such that P (x) and n > b1
are chosen.

3. A procedure q2(x, n, δ) to show that
∆+δ
y=xpn(y) ≡ p′(x) (err a2

n + b2{δ}) when two
complex numbers x, δ and a positive integer n
such that P (x), n > b1, and 0 < ‖δ‖2 ≤ c2

2

are chosen.

The objective of the following instructions is to con-
struct the following:

1. Rational numbers a3, b3, a4, b4, c4.

2. A procedure q3(x, n) to show that Bp′n(x) ≡
0 (err a3) when a complex number x and a
positive integer n such that P (x) and n > b3
are chosen.

3. A procedure q4(x, n, δ) to show that
∆+δ
y=x(Bpn(y)) ≡ Bp′n(x) (err a4

n + b4{δ})
when two complex numbers x, δ and a pos-
itive integer n such that P (x), n > b3, and
0 < ‖δ‖2 ≤ c42 are chosen.

Implementation

1. Let a3 = {B}a1.

2. Let b3 = b1.

3. Let a4 = {B}a2.

4. Let b4 = {B}b2.

5. Let c4 = c2.

6. Let q3(x, n) be the following procedure:

(a) Show that p′n(x) ≡ 0 (err a1) using proce-
dure q1.

(b) Hence show thatBp′n(x) ≡ 0B (err {B}a1) (err a3).

7. Let q4(x, n, δ) be the following procedure:

(a) Show that ∆+δ
y=xpn(y) ≡ p′(x) (err a2

n +
b2{δ}) using procedure q4.

(b) Hence show that B∆+δ
y=xpn(y) ≡ Bp′(x)

i. (err {B}(a2n + b2{δ}))

ii. (err a4
n + b4{δ}).

8. Yield the tuple 〈a3, b3, a4, b4, c4, q3, q4〉.

Procedure IV:13(mon1908191207)

Objective

Choose the following:

1. A procedure q0(x, n) to show that pn(x) ≡
0 (err a0) when a complex number x and a
positive integer n such that P (x) and n > b0
are chosen.

2. A procedure q1(x, n) to show that p′n(x) ≡
0 (err a1) when a complex number x and a
positive integer n such that P (x) and n > b0
are chosen.
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3. A procedure q2(x, n, δ) to show that
∆+δ
y=xpn(y) ≡ p′n(x) (err a2

n + b2{δ}) when two
complex numbers x, δ and a positive integer n
such that P (x), n > b0, and 0 < ‖δ‖2 < c2

2

are chosen.

4. A procedure q3(x, n) to show that tn(x) ≡
0 (err a3) when a complex number x and a
positive integer n such that R(x) and n > b3
are chosen.

5. A procedure q4(x, n) to show that t′n(x) ≡
0 (err a4) when a complex number x and a
positive integer n such that R(x) and n > b3
are chosen.

6. A procedure q5(x, n, δ) to show that
∆+δ
y=xtn(y) ≡ t′n(x) (err a5

n + b5{δ}) when two
complex numbers x, δ and a positive integer n
such that R(x), n > b3, and 0 < ‖δ‖2 < c5

2

are chosen.

The objective of the following instructions is to con-
struct the following:

1. Rational numbers a6, b6, a7, b7, c7.

2. A procedure q6(x, n) to show that pn(x)t′n(x)+
p′n(x)tn(x) ≡ 0 (err a6) when a complex num-
ber x and a positive integer n such that P (x),
R(x), and n > b6 are chosen.

3. A procedure q7(x, n, δ) to show that
∆+δ
y=x(pn(y)tn(y)) ≡ pn(x)t′n(x) +

p′n(x)tn(x) (err a7
n + b7{δ}) when two complex

numbers x, δ such that P (x), R(x), n > b6,
and 0 < ‖δ‖2 < c7

2 are chosen.

Implementation

1. Let a6 = a0a4 + a1a3.

2. Let b6 = max(b0, b3).

3. Let a7 = 0.

4. Let b7 = (a5 + b5c7 + a4)(a2 + b2c7 + a1).

5. Let c7 = min(c2, c5).

6. Let q7(x, n, δ) be the following procedure:

(a) Show that {δ} ≤ 2c7 given that {δ}2 ≤
2‖δ‖2 ≤ 4c7

2.

(b) Hence using procedures q2, q1, show that
∆+δ
y=xpn(y)

i. ≡ p′n(x) (err a2
n + b2{δ})

ii. ≡ 0 (err a1).

(c) Hence using procedures q5, q4, show that
∆+δ
y=xtn(y)

i. ≡ t′n(x) (err a5
n + b5{δ})

ii. ≡ 0 (err a4).

(d) Show that pn(x) ≡ 0 (err a0) using proce-
dure q0.

(e) Show that tn(x) ≡ 0 (err a6) using proce-
dure q3.

(f) Hence show that ∆+δ
y=x(pn(y)tn(y))

i. = pn(x+ δ)∆+δ
y=xtn(y) + tn(x)∆+δ

y=xpn(y)

ii. = (pn(x) + δ∆+δ
y=xpn(y))∆+δ

y=xtn(y) +

tn(x)∆+δ
y=xpn(y)

iii. = pn(x)∆+δ
y=xtn(y)+δ∆+δ

y=xpn(y)∆+δ
y=xtn(y)+

tn(x)∆+δ
y=xpn(y)

iv. ≡ pn(x)∆+δ
y=xtn(y) + 0δ∆+δ

y=xpn(y) +

tn(x)∆+δ
y=xpn(y) (err (a5n + b5{δ} +

a4){δ}(a2n + b2{δ}+ a1))

(g) Hence show that ∆+δ
y=x(pn(y)tn(y)) ≡

pn(x)∆+δ
y=xtn(y)+tn(x)∆+δ

y=xpn(y) (err a7
n +

b7{δ}).

7. Let q6(x, n) be the following procedure:

(a) Show that p′n(x) ≡ 0 (err a1) using proce-
dure q1.

(b) Show that t′n(x) ≡ 0 (err a4) using proce-
dure q4.

(c) Show that pn(x) ≡ 0 (err a0) using proce-
dure q0.

(d) Show that tn(x) ≡ 0 (err a3) using proce-
dure q3.

(e) Hence show that pn(x)t′n(x) +
p′n(x)tn(x) ≡ 0 (err a0a4 + a1a3) (err a6).

8. Yield the tuple 〈a6, b6, a7, b7, c7, q6, q7〉.

Procedure IV:14(fri2308191803)

Objective

Choose the following:

1. A procedure q0(x, n) to show that p′n(x) ≡
q′n(x) (err a0

n ) when a complex number x and
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a positive integer n such that P (x) and n > b0
are chosen.

2. A procedure q1(x, n) to show that p′n(x) ≡
0 (err a1) when a complex number x and a
positive integer n such that P (x) and n > b1
are chosen.

3. A procedure q2(x, n, δ) to show that
∆+δ
y=xpn(y) ≡ p′n(x) (err a2

n + b2{δ}) when two
complex numbers x, δ and a positive integer n
such that P (x), n > b1, and 0 < ‖δ‖2 ≤ c2

2

are chosen.

The objective of the following instructions is to con-
struct the following:

1. Rational numbers a3, b3, a4, b4, c4.

2. A procedure q3(x, n) to show that q′n(x) ≡
0 (err a3) when a complex number x and a
positive integer n such that P (x) and n > b3
are chosen.

3. A procedure q4(x, n, δ) to show that
∆+δ
y=xpn(y) ≡ q′n(x) (err a4

n + b4{δ}) when two
complex numbers x, δ and a positive integer n
such that P (x), n > b3, and 0 < ‖δ‖2 ≤ c4

2

are chosen.

Implementation

1. Let a3 = a0 + a1.

2. Let b3 = max(b0, b1).

3. Let a4 = a0 + a2.

4. Let b4 = b2.

5. Let c4 = c2.

6. Let q3(x, n) be the following procedure:

(a) Show that p′n(x) ≡ q′n(x) (err a0
n ) using pro-

cedure q0.

(b) Show that p′n(x) ≡ 0 (err a1) using proce-
dure q1.

(c) Hence show that q′n(x) ≡ 0 (err a3).

7. Let q4(x, n, δ) be the following procedure:

(a) Using procedures q0, q2, show that
∆+δ
y=xpn(y)

i. ≡ p′n(x) (err a2
n + b2{δ})

ii. ≡ q′n(x) (err a0
n ).

(b) Hence show that ∆+δ
y=xpn(y) ≡ q′n(x)

i. (err a2
n + b2{δ}+ a0

n )

ii. (err a4
n + b4{δ}).

8. Yield the tuple 〈a3, b3, a4, b4, c4, q3, q4〉.
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Chapter 14

Common Derivatives

Procedure IV:15(tue2008191151)

Objective

Choose a complex number B and a rational number
D > 0. The objective of the following instructions is
to construct rational numbers a, b, c, d, a procedure
p(x, n) to show that 0 ≡ 0 (err a) when a complex
number x and a positive integer n such that n > d
are chosen, and a procedure q(x, n, δ) to show that
∆+δ
y=xB ≡ 0 (err b

n + c{δ}) when in addition a com-
plex number δ such that 0 < ‖δ‖2 ≤ D2 is chosen.

Implementation

1. Let a = b = c = d = 0.

2. Let p(x, n) be the following procedure:

(a) Show that 0 ≡ 0 (err a).

3. Let q(x, n, δ) be the following procedure:

(a) Show that ∆+δ
y=xB ≡ 0 (err b

n + c{δ}).

4. Yield the tuple 〈a, b, c, d, p, q〉.

Procedure IV:16(tue2008191209)

Objective

Choose a positive integer N and positive rational
numbers X,D. The objective of the following in-
structions is to construct rational numbers a, b, c, d,
a procedure p(x, n) to show that NxN−1 ≡ 0 (err a)
when a complex number x and a positive integer
n such that ‖x‖2 ≤ X2 and n > d are chosen,
and a procedure q(x, n, δ) to show that ∆+δ

y=xy
N ≡

NxN−1 (err b
n + c{δ}) when in addition a complex

number δ such that 0 < ‖δ‖2 ≤ D2 is chosen.

Implementation

1. Let a = NXN−1.

2. Let b = d = 0.

3. Let c =
∑[0:N−1]
r

(
N
r

)
XrDN−r−2.

4. Let p(x, n) be the following procedure:

(a) Show that NxN−1 ≡ 0 (err NxN−1)
(err NXN−1) (err a).

5. Let q(x, n, δ) be the following procedure:

(a) Show that ∆+δ
y=xy

N ≡ NxN−1

i. (err (x+δ)N−xN

δ −NxN−1)

ii. (err 1
δ (
∑[0:N+1]
r

(
N
r

)
xrδN−r − xN ) −

NxN−1)

iii. (err
∑[0:N ]
r

(
N
r

)
xrδN−r−1 −NxN−1)

iv. (err δ(
∑[0:N−1]
r

(
N
r

)
xrδN−r−2))

v. (err b
n + c{δ}).

6. Yield the tuple 〈a, b, c, d, p, q〉.

Procedure IV:17(tue2008191254)

Objective

Choose two rational numbers X > D > 0. The ob-
jective of the following instructions is to construct
rational numbers a, b, c, d, a procedure p(x, n) to
show that − 1

x2 ≡ 0 (err a) when a complex num-
ber x and a positive integer n such that ‖x‖2 ≥ X2

and n > b are chosen, and a procedure q(x, n, δ) to
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show that ∆+δ
y=x

1
y ≡ −

1
x2 (err c

n +d{δ}) when in ad-

dition a complex number δ such that 0 < ‖δ‖2 ≤ D2

is chosen.

Implementation

1. Let a = 1
X2 .

2. Let b = c = 0.

3. Let d = 1
X2(X−D) .

4. Let p(x, n) be the following procedure:

(a) Show that 1
x2 ≡ 0 (err 1

x2 ) (err 1
X2 ) (err a).

5. Let q(x, n, δ) be the following procedure:

(a) Show that ∆+δ
y=x

1
y ≡ −

1
x2

i. (err 1
δ ( 1
x+δ −

1
x ) + 1

x2 )

ii. (err 1
δ ·

−δ
x(x+δ) + 1

x2 )

iii. (err 1
x2 − 1

x(x+δ) )

iv. (err δ
x2(x+δ) )

v. (err {δ}
X2(X−D) )

vi. (err c
n + d{δ}).

6. Yield the tuple 〈a, b, c, d, p, q〉.

Procedure IV:18(tue2008191341)

Objective

Choose a positive integer N and positive rational
numbers X < Y . The objective of the following
instructions is to construct positive rational num-
bers a, b, c, d, e, a procedure p(x, n) to show that
−Nx−N−1 ≡ 0 (err a) when a complex number x
and a positive integer n such that X2 ≤ ‖x‖2 ≤ Y 2

and n > b are chosen, and a procedure q(x, n, δ) to
show that ∆+δ

y=xy
−N ≡ −Nx−N−1 (err c

n + d{δ})
when in addition a complex number δ such that
0 < ‖δ‖2 ≤ e2 is chosen.

Implementation

1. Execute the following in post-order:

(a) Execute procedure IV:11 on 〈q2, q3, q4, q5,
q6〉 and let 〈a, b, c, d, e, q0, q1〉 receive.

i. Execute procedure IV:17 on 〈XN , X
N

2 〉
and let 〈· · · , q2, q3〉 receive.

ii. Execute procedure IV:16 on 〈N,Y, Y 〉 and
let 〈· · · , q4, q5〉 receive.

iii. Let q6(x, n) be the following procedure:

A. Show that ‖xN‖2 = (‖x‖2)N ≥
(X2)N = (XN )2.

2. Let p(x, n) be the following procedure:

(a) Show that −Nx−N−1 = − 1
(xN )2

·NxN−1 ≡
0 (err a) using procedure q0.

3. Let q(x, n, δ) be the following procedure:

(a) Using procedure q1, show that ∆+δ
y=xy

−N

i. = 1
δ (((x+ δ)N )−1 − (xN )−1)

ii. ≡ − 1
(xN )2

·NxN−1 (err c
n + d{δ})

iii. = −Nx−N−1

(b) Hence show that ∆+δ
y=xy

−N ≡
−Nx−N−1 (err c

n + d{δ}).

4. Yield the tuple 〈a, b, c, d, e, p, q〉.

Procedure IV:19(3.18)

Objective

Choose a rational number D ≥ 0. The objective of
the following instructions is to construct two ratio-
nal numbers a, c and a procedure, p(n, δ), to show
that ∆+δ

x=0 expn(x) ≡ 1 (err aδ) (err a{δ}) when a
complex number δ and a positive integer n such that
0 < ‖δ‖2 ≤ D2 and n > c are chosen.

Implementation

1. Execute procedure III:34 on 〈D〉 and let 〈a, c,
q〉 receive.

2. Let p(δ, n) be the following procedure:

(a) Now using procedure II:27, and procedure q,
show that expn(δ)− 1 ≡ δ

i. (err expn(δ)− 1− δ)

ii. (err (1 + δ
n )n − 1− δ)

iii. (err δ
n

∑[0:n]
r (1 + δ

n )r − n δn )

iv. (err δ
n

∑[0:n]
r ((1 + δ

n )r − 1))

v. (err δ
n

∑[0:n]
r

δ
n

∑[0:r]
k (1 + δ

n )k)

vi. (err δ2

n2

∑[0:n]
r

∑[0:r]
k (1 + δ

n )k)
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vii. (err δ2

n2

∑[0:n]
r

∑[0:r]
k a)

viii. (err δ2a).

(b) Therefore show that ∆+δ
x=0 expn(x) ≡

1 (err aδ) (err a{δ}).

3. Yield the tuple 〈a, c, p〉.

Procedure IV:20(3.19)

Objective

Choose two rational numbers X ≥ 0, D ≥ 0. The
objective of the following instructions is to construct
rational numbers l, a, b, d, a procedure t(x, n) to
show that expn(x) ≡ 0 (err l) when a complex num-
ber x and a positive integer n such that ‖x‖2 ≤ X2

and n > d are chosen, and a procedure, q(x, n, δ), to
show that ∆+δ

y=x expn(y) ≡ expn(x) (err a
n + b{δ})

when in addition a complex number δ such that
0 < ‖δ‖2 ≤ D2 is chosen.

Implementation

1. Execute procedure III:36 on 〈max(X,D)〉 and
let 〈e, f, u〉 receive.

2. Execute procedure IV:19 on 〈X〉 and let 〈h, j,
r〉 receive.

3. Execute procedure III:34 on 〈X〉 and let 〈l,m,
t〉 receive.

4. Let a = eX.

5. Let b = lh.

6. Let d = max(f, j,m).

7. Let p(x, n, δ) be the following procedure:

(a) Using procedures u, r, t, show that
∆+δ
y=x expn(y)

i. = expn(x+δ)−expn(x)
δ

ii. = expn(x) expn(δ)−expn(x)
δ

A. (err exδ
nδ )

B. (err eX
n )

iii. = expn(x)∆δ
y=0 expn(y)

iv. ≡ expn(x) · 1 (err lh{δ}).

(b) Hence show that ∆+δ
y=x expn(y) ≡

expn(x) (err ex
n + lh{δ}) (err a

n + b{δ}).

8. Yield the tuple 〈a, b, d, p〉.

Procedure IV:21(3.27)

Objective

Choose non-negative rational numbers X,D. The
objective of the following instructions is to construct
rational numbers l, d, a, b, a procedure q(x, n) to
show that cosn(x) ≡ 0 (err l) when a complex num-
ber x and a positive integer n such that ‖x‖2 ≤ X2

and n > d are chosen, and a procedure p(x, n, δ) to
show that ∆+δ

y=x sinn(y) ≡ cosn(x) (err a
n + b{δ})

when in addition a complex number δ such that
0 < ‖δ‖2 ≤ D2 is chosen.

Implementation

1) Execute the following in post-order:

a) Execute procedure IV:12 on 〈 1
2i , q2, q3〉 and

let 〈l, d, a, b,D, q0, q1〉 receive.

i) Execute procedure IV:10 on 〈q4, q5, q6, q7〉
and let 〈q2, q3〉 receive.

(1) Execute procedure IV:11 on 〈q8, q9, q10,
q11, q12〉 and let 〈q4, q5〉 receive.

(a) Execute procedure IV:20 on 〈X,D〉
and let 〈q8, q9〉 receive.

(b) Execute procedure IV:12 on 〈i, q13,
q14〉 and let 〈q10, q11〉 receive.

(i) Execute procedure IV:16 on 〈1, X,
D〉 and let 〈q13, q14〉 receive.

(c) Let q12(x, n) be the following proce-
dure:

(i) Show that ‖ix‖2 = ‖x‖2 ≤ X2.

(2) Execute procedure IV:12 on 〈−1, q15,
q16〉 and let 〈q6, q7〉.

(a) Execute procedure IV:11 on 〈q17, q18,
q19, q20, q21〉 and let 〈q15, q16〉 receive.

(i) Execute procedure IV:20 on 〈X,D〉
and let 〈q17, q18〉 receive.

(ii) Execute procedure IV:12 on 〈−i, q22,
q23〉 and let 〈q19, q20〉 receive.

(1) Execute procedure IV:16 on 〈1, X,
D〉 and let 〈q22, q23〉 receive.

(iii) Let q21(x, n) be the following proce-
dure:

(1) Show that ‖−ix‖2 = ‖x‖2 ≤ X2.
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2) Let p(x, n) be the following procedure:

1. Using procedure q0, show that cosn(x)

(a) = 1
2 (expn(ix) + expn(−ix))

(b) = 1
2i (expn(ix1) · i · 1x0 +

(−1) expn(−ix1) · (−i) · 1 · x0)

(c) ≡ 0 (err l).

3) Let q(x, n, δ) be the following procedure:

1. Using procedure q1, show that
∆+δ
y=x sinn(y)

(a) = ∆+δ
y=x( expn(ix)−expn(−ix)

2i )

(b) = ∆+δ
y=x( 1

2i (expn(ix1)+(−1) expn((−i)x1)))

(c) ≡ 1
2i (expn(ix1) · i · 1x0 +

(−1) expn(−ix1) · (−i) · 1 · x0) (err a
n +

b{δ})

(d) = expn(ix)+expn(−ix)
2

(e) = cosn(x).

2. Hence show that ∆+δ
y=x sinn(y) ≡

cosn(x) (err a
n + b{δ}).

4) Yield the tuple 〈l, d, a, b,D, p, q〉.

Procedure IV:22(3.28)

Objective

Choose non-negative rational numbers X,D. The
objective of the following instructions is to con-
struct rational numbers l, d, a, b, a procedure q(x,
n) to show that − sinn(x) ≡ 0 (err l) when a
complex number x and a positive integer n such
that ‖x‖2 ≤ X2 and n > d are chosen, and a
procedure p(x, n, δ) to show that ∆+δ

y=x cosn(y) ≡
− sinn(x) (err a

n +b{δ}) when in addition a complex
number δ such that 0 < ‖δ‖2 ≤ D2 is chosen.

Implementation

Implementation is analogous to that of procedure
IV:21.

Procedure IV:23(wed2108191034)

Objective

Choose non-negative rational numbers X,D such
that X + D < 1. The objective of the following

instructions is to construct rational numbers l, d, a,
b, a procedure p(x, n) to show that (1 + x)−1

n−1 ≡
0 (err l) when a complex number x and a posi-
tive integer n such that ‖x‖2 ≤ X2 and n > d
are chosen, and a procedure q(x, n, δ) to show that
∆+δ
y=x lnn(1+y) ≡ (1+x)−1

n−1 (err a
n +b{δ}) when in

addition a complex number δ such that 0 < ‖δ‖2 ≤
D2 is chosen.

Implementation

1. Execute procedure III:55 on 〈1, X〉 and let 〈a1,
p1〉 receive.

2. Let l = a1.

3. Let d = 1.

4. Let a = 0.

5. Let b = 1
D2((X+D)−1−1) .

6. Let p(x, n) be the following procedure:

(a) Using procedure p1, show that (1 + x)−1
n−1

i. = ((1 + x)−1
n−1)1

ii. ≡ 0 (err a1).

7. Let q(x, n, δ) be the following procedure:

(a) Using procedure II:28, show that
∆+δ
y=x lnn(1 + y) ≡ (1 + x)−1

n−1

i. (err ∆+δ
y=x lnn(1 + y)− (1 + x)−1

n−1)

ii. (err 1
δ (
∑[1:n]
r

(−1)r−1

r (x + δ)r −∑[1:n]
r

(−1)r−1

r xr)−
∑[0:n−1]
r

(−1
r

)
xr)

iii. (err 1
δ

∑[1:n]
r

(−1)r−1

r (
∑[0:r+1]
k

(
r
k

)
xkδr−k−

xr)−
∑[0:n−1]
r (−1)rxr)

iv. (err
∑[1:n]
r

(−1)r−1

r

∑[0:r]
k

(
r
k

)
xkδr−1−k −∑[0:n−1]

r (−1)rxr)

v. (err
∑[1:n]
r

(−1)r−1

r (
∑[0:r]
k

(
r
k

)
xkδr−1−k −

rxr−1))

vi. (err δ(
∑[1:n]
r

(−1)r−1

r

∑[0:r−1]
k

(
r
k

)
xkδr−2−k))

vii. (err δ(
∑[1:n]
r

∑[0:r−1]
k

(
r
k

)
XkDr−2−k))

viii. (err δ( 1
D2

∑[1:n]
r

∑[0:r−1]
k

(
r
k

)
XkDr−k))

ix. (err δ( 1
D2

∑[1:n]
r (X +D)r))

x. (err δ( 1
D2((X+D)−1−1) ))
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xi. (err a
n + b{δ}).

8. Yield the tuple 〈l, d, a, b, p, q〉.

Procedure IV:24(wed2108191140)

Objective

Choose non-negative rational numbers X,D such
that X + D < 1. The objective of the following
instructions is to construct rational numbers l, d, a,
b, a procedure p(x, n) to show that 1

1+x ≡ 0 (err l)
when a complex number x and a positive integer n
such that ‖x‖2 ≤ X2 and n > d are chosen, and a
procedure q(x, n, δ) to show that ∆+δ

y=x lnn(1 + y) ≡
1

1+x (err a
n +b{δ}) when in addition a complex num-

ber δ such that 0 < ‖δ‖2 ≤ D2 is chosen.

Implementation

1. Execute procedure III:53 on 〈X, 1〉 and let 〈a1,
b1, p1〉 receive.

2. Execute procedure IV:23 on 〈X,D〉 and let
〈a2, b2, c2, b, p2, q2〉 receive.

3. Let l = 1
1−X .

4. Let d = max(1, b2).

5. Let a = 2a1l + c2.

6. Let p(x, n) be the following procedure:

(a) Show that |re(x)| ≤ X given that re(x)2 ≤
‖x‖2 ≤ X2.

(b) Hence show that ‖1 + x‖2

i. ≥ re(1 + x)2

ii. = (1 + re(x))2

iii. ≤ (1−X)2.

(c) Hence show that 1
1+x ≡ 0 (err 1

1+x )

(err 1
1−X ) (err l).

7. Let q(x, n, δ) be the following procedure:

(a) Show that ‖ 1
1+x‖

2 ≤ l2 using procedure p.

(b) Show that ‖(n − 1)(−x)n−1‖2 ≤
(a1b1

n−1)2 ≤ a1
2 using procedure p1.

(c) Hence show that ‖(−x)n−1‖2 ≤ ( a1
n−1 )2 ≤

( 2a1
n )2.

(d) Now using procedure q2, show that
∆+δ
y=x lnn(1 + y)

i. ≡ (1 + x)−1
n−1 (err c2

n + b{δ})

ii. = 1−(−x)n−1

1−(−x)

iii. ≡ 1
1+x (err (−x)n−1

1+x ) (err 2a1l
n ).

(e) Hence show that ∆+δ
y=x lnn(1 + y) ≡

1
1+x (err c2

n + b{δ}+ 2a1l
n ) (err a

n + b{δ}).

8. Yield the tuple 〈l, d, a, b, p, q〉.

Procedure IV:25(sun0812191401)

Objective

Choose a rational number X such that 0 < X ≤ 1.
The objective of the following instructions is to con-
struct a rational number f such that 0 ≤ f < 1,
and a procedure p(x) to show that re(x−1

x+1 ) ≥ −f
and ‖x−1

x+1‖
2 ≤ 1 when a complex number x such

that re(x) ≥ 0 and ‖x‖2 ≥ X2 is chosen.

Implementation

1. Let f = 1−X2

1+X2 .

2. Verify that 0 ≤ f < 1.

3. Let p(x) be the following procedure:

(a) Show that ‖x−1
x+1‖

2 ≤ 1

i. given that ‖x− 1‖2 ≤ ‖x+ 1‖2

ii. given that (re(x)− 1)2 ≤ (re(x) + 1)2

iii. given that 0 ≤ re(x).

(b) Show that re(x−1
x+1 )

i. = re( (x−1)((x+1)−)
(x+1)((x+1)−) )

ii. = re(‖x‖
2+x−(x)−−1

‖x‖2+x+(x)−+1 )

iii. = ‖x‖2−1
‖x‖2+2 re(x)+1

iv. ≥ X2−1
‖x‖2+2 re(x)+1

v. ≥ X2−1
X2+1 = −f .

Declaration IV:2(wed2108191408)

The notation lnn(x), where x is a complex number,
will be used as a shorthand for lnn(1+ x−1

x+1 )−lnn(1−
x−1
x+1 ) when re(x) ≥ 0, lnn(xi ) + τn

4 i when im(x) ≥ 0,
and lnn(xi)− τn

4 i if otherwise.
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Procedure IV:26(thu2208191250)

Objective

Choose a rational number X such that 1 ≥ X > 0.
The objective of the following instructions is to con-
struct a positive rational number a, and a procedure
p(x, k) to show that ‖lnk(x)‖2 ≤ a2 when a posi-
tive integer k and a complex number x such that
‖x‖2 ≥ X2 and re(x) ≥ 0 are chosen.

Implementation

1. Execute procedure IV:25 on 〈X〉 and let 〈a1,
p1〉 receive.

2. Verify that 0 < a1 < 1.

3. Execute procedure III:70 on 〈a1〉 and let 〈a2,
p2〉 receive.

4. Let a = 2a2.

5. Let p(x, k) be the following procedure:

(a) Show that ‖x−1
x+1‖

2 ≤ a1
2 using procedure p1.

(b) Show that ‖lnk(1 + x−1
x+1 )‖2 ≤ a2

2 using pro-
cedure p2.

(c) Show that ‖lnk(1− x−1
x+1 )‖2 ≤ a2

2 using pro-
cedure p2.

(d) Hence show that ‖lnk(x)‖2

i. = ‖lnk(1 + x−1
x+1 )− lnk(1− x−1

x+1 )‖2

ii. ≤ a2.

6. Yield the tuple 〈a, p〉.

Procedure IV:27(sun0812191440)

Objective

Choose a rational number X such that 0 < X ≤ 1.
The objective of the following instructions is to con-
struct positive rational numbers a, b, and a proce-
dure p(x, k) to show that ‖lnk(x)‖2 ≤ a2 when a
positive integer k and a complex number x such that
‖x‖2 ≥ X2 and k > b are chosen.

Implementation

1. Execute procedure IV:26 on 〈X〉 and let 〈a1,
p1〉 receive.

2. Execute procedure III:74 and let 〈a2, b2, p2〉 re-
ceive.

3. Verify that a2 > 0.

4. Let a = a1 + a2
4 .

5. Let p(x, k) be the following procedure:

(a) Show that 1
4τk ≤

a2
4 using procedure p2.

(b) If re(x) ≥ 0, then do the following:

i. Show that ‖lnk(x)‖2 ≤ a1
2 ≤ a2 using

procedure p1.

(c) Otherwise if im(x) ≥ 0, then do the follow-
ing:

i. Show that ‖xi ‖
2 = ‖x‖2 ≥ X2.

ii. Show that re(xi ) = re(im(x) − re(x)i) =
im(x) ≥ 0.

iii. Hence show that ‖lnk(xi )‖2 ≤ a1
2 using

procedure p1.

iv. Hence show that ‖lnk(x)‖2 = ‖lnk(xi )+
τk
4 i‖

2 ≤ (a1 + a2
4 )2 = a2.

(d) Otherwise do the following:

i. Show that ‖xi‖2 = ‖x‖2 ≥ X2.

ii. Show that re(xi) = re(− im(x) + re(x)i) =
− im(x) > 0.

iii. Hence show that ‖lnk(xi)‖2 ≤ a1
2 using

procedure p1.

iv. Hence show that ‖lnk(x)‖2 = ‖lnk(xi)−
τk
4 i‖

2 ≤ (a1 + a2
4 )2 = a2.

6. Yield the tuple 〈a, b, p〉.

Procedure IV:28(wed2108191401)

Objective

Choose a rational number X such that 1 ≥ X > 0.
The objective of the following instructions is to
construct positive rational numbers a, c, d, e and a
procedure p(x, n, k) to show that expn(lnk(x)) ≡
x (err an

k + c
n ) when a complex number x and in-

tegers k, n such that re(x) ≥ 0, ‖x‖2 ≥ X2, n > e,
and k > d are chosen.

Implementation

1. Execute procedure IV:25 on 〈X〉 and let 〈f, p0〉
receive.

2. Execute procedure III:70 on 〈f〉 and let 〈a1,
p1〉 receive.
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3. Execute procedure III:37 on 〈a1〉 and let 〈a2,
b2, p2〉 receive.

4. Execute procedure III:35 on 〈a1〉 and let 〈a3,
b3, p3〉 receive.

5. Execute procedure III:71 on 〈f〉 and let 〈a4,
c4, d, e4, p4〉 receive.

6. Let a = a4
a3

+ a4(1+f)
a3(1−f) .

7. Let c = a2 + c4
a3

+ c4(1+f)
a3(1−f) .

8. Let e = max(b2, b3, e4).

9. Let p(x, n, k) be the following procedure:

(a) Show that re(x−1
x+1 )2 ≤ ‖x−1

x+1‖
2 ≤ f2 using

procedure p0.

(b) Hence show that |re(x−1
x+1 )| ≤ f .

(c) Show that ‖lnk(1 + x−1
x+1 )‖2 ≤ a1

2 using pro-
cedure p1.

(d) Show that ‖lnk(1− x−1
x+1 )‖2 ≤ a1

2 using pro-
cedure p1.

(e) Hence using procedures p0, p2, p3, p4, show
that expn(lnk(x))

i. = expn(lnk(1 + x−1
x+1 )− lnk(1− x−1

x+1 ))

ii. ≡ expn(lnk(1+ x−1
x+1 ))

expn(lnk(1− x−1
x+1 ))

(err a2
n )

iii. ≡ 1+ x−1
x+1

expn(lnk(1− x−1
x+1 ))

(err 1
a3

(a4nk + c4
n ))

iv. ≡ 1+ x−1
x+1

1− x−1
x+1

(err ( 1+f
a3(1−f) )(a4nk + c4

n ))

v. = x.

(f) Hence show that expn(lnk(x)) ≡ x

i. (err a2
n + 1

a3
(a4nk + c4

n ) + ( 1+f
a3(1−f) )(a4nk +

c4
n ))

ii. (err an
k + c

n ).

10. Yield the tuple 〈a, c, d, e, p〉.

Procedure IV:29(sun0812191512)

Objective

Choose a rational number X such that 0 < X ≤ 1.
The objective of the following instructions is to
construct positive rational numbers a, c, d, e and a
procedure p(x, n, k) to show that expn(lnk(x)) ≡

x (err an
k + c

n ) when a complex number x and inte-
gers k, n such that ‖x‖2 ≥ X2, n > e, and k > d are
chosen.

Implementation

1. Execute procedure IV:28 on 〈X〉 and let 〈a1,
b1, c1, d1, p1〉 receive.

2. Execute procedure IV:27 on 〈X〉 and let 〈a2,
b2, p2〉 receive.

3. Execute procedure III:82 on 〈a2, 1〉 and let 〈a3,
b3, c3, d3, p3〉 receive.

4. Let a = a2 + a3.

5. Let c = b1 + b3.

6. Let d = max(c1, b2, d3).

7. Let e = max(c3, d1).

8. Let p(x, n, k) be the following procedure:

(a) If re(x) ≥ 0, then do the following:

i. Show that expn(lnk(x)) ≡ x (err a2n
k +

b1
n ) (err an

k + c
n ) using procedure p1.

(b) Otherwise if im(x) ≥ 0, then do the follow-
ing:

i. Show that ‖xi ‖
2 = ‖x‖2 ≥ X2.

ii. Show that re(xi ) = re(im(x) − re(x)i) =
im(x) ≥ 0.

iii. Hence show that expn(lnk(xi )) ≡
x
i (err a2n

k + b1
n ) using procedure p1.

iv. Hence show that ‖lnk(xi )‖2 ≤ a2
2 using

procedure p2.

v. Hence using procedure p3, show that
expn(lnk(x))

A. = expn(lnk(xi ) + τk
4 i)

B. ≡ i1 expn(lnk(xi )) (err a3n
k + b3

n )

C. ≡ i · xi (err a2n
k + b1

n )

D. = x.

vi. Hence show that expn(lnk(x)) ≡
x (err an

k + c
n ).

(c) Otherwise do the following:

i. Show that ‖xi‖2 = ‖x‖2 ≥ X2.
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ii. Show that re(xi) = re(− im(x) + re(x)i) =
− im(x) > 0.

iii. Hence show that expn(lnk(xi)) ≡
xi (err a2n

k + b1
n ) using procedure p1.

iv. Hence show that ‖lnk(xi)‖2 ≤ a2
2 using

procedure p2.

v. Hence using procedure p3, show that
expn(lnk(x))

A. = expn(lnk(xi)− τk
4 i)

B. ≡ i−1 expn(lnk(xi)) (err a3n
k + b3

n )

C. ≡ i−1xi (err a2n
k + b1

n )

D. = x.

vi. Hence show that expn(lnk(x)) ≡
x (err an

k + c
n ).

9. Yield the tuple 〈a, c, d, e, p〉.

Procedure IV:30(wed2108191324)

Objective

Choose two rational numbers X, ε such that 0 < ε <
1 and X ≥ 0. The objective of the following in-
structions is to construct a rational number f such
that 0 < f < 1, and a procedure p(x) to show that
‖x−1
x+1‖

2 ≤ f2 when a complex number x such that

re(x) ≥ ε and ‖x‖2 ≤ X2 is chosen.

Implementation

1. Let f = 1− 2ε
X2+1+2ε .

2. Show that 0 < f < 1.

3. Let p(x) be the following procedure:

(a) Show that X2 + 1 + 2ε ≤ 4ε
1−f2

i. given that 4ε
X2+1+2ε ≥ 1− f2

ii. given that f2 = 1 − 4ε
X2+1+2ε +

( 2ε
X2+1+2ε )

2 ≥ 1− 4ε
X2+1+2ε .

(b) Hence show that ‖x‖2

i. ≤ X2

ii. ≤ 4ε
1−f2 − (1 + 2ε)

iii. = 4ε−1+f2−2ε+2εf2

1−f2

iv. = f2−1+2ε(1+f2)
1−f2

v. ≤ f2−1+2 re(x)(1+f2)
1−f2 .

(c) Hence show that ‖x−1
x+1‖

2 ≤ f2

i. given that (re(x) − 1)2 + im(x)2 ≤
f2((re(x) + 1)2 + im(x)2)

ii. given that (1 − f2)(re(x)2 + im(x)2) ≤
f2 − 1 + 2 re(x)(1 + f2).

4. Yield the tuple 〈f, p〉.

Procedure IV:31(wed2108191603)

Objective

Choose two rational numbers X, ε such that 0 <
ε < 1 and X ≥ 0. The objective of the following
instructions is to construct rational numbers c, d, a,
b, e, a procedure p(x, n) to show that ‖ 1

x‖
2 ≤ c2

when a complex number x and a positive integer
n such that re(x) ≥ ε, ‖x‖2 ≤ X2, and n > d
are chosen, and a procedure q(x, n, δ) to show that
∆+δ
y=x lnn(y) ≡ 1

x (err a
n + b{δ}) when in addition

a complex number δ such that 0 < ‖δ‖2 ≤ e2 is
chosen.

Implementation

1) Execute the following in post-order:

a) Execute procedure IV:10 on 〈q3, q4, q5, q6〉
and let 〈c, d, a, b, e, q1, q2〉 receive.

i) Execute procedure IV:11 on 〈q7, q8, q9, q10,
q11〉 and let 〈q3, q4〉 receive.

(1) Execute procedure IV:24 on 〈e1,
1−e1

2 〉
and let 〈q7, q8〉 receive.

(a) Execute procedure IV:30 on 〈X, ε〉 and
let 〈e1, q12〉 receive.

(2) Execute procedure IV:10 on 〈q13, q14,
q15, q16〉 and let 〈q9, q10〉 receive.

(a) Execute procedure IV:15 on 〈1, 1〉 and
let 〈q13, q14〉 receive.

(b) Execute procedure IV:12 on 〈−2, q17,
q18〉 and let 〈q15, q16〉 receive.

(i) Execute procedure IV:11 on 〈q19,
q20, q21, q22, q23〉 and let 〈q17, q18〉 re-
ceive.

(1) Execute procedure IV:18 on 〈1,
1 + ε,X + 1〉 and let 〈q19, q20〉 re-
ceive.
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(2) Execute procedure IV:10 on 〈q24,
q25, q26, q27〉 and let 〈q21, q22〉 re-
ceive.

(a) Execute procedure IV:15 on 〈1,
1〉 and let 〈q24, q25〉 receive.

(b) Execute procedure IV:16 on 〈1,
X, 1〉 and let 〈q26, q27〉 receive.

(3) Let q24(x, n) be the following pro-
cedure:

(a) Show that (1 + ε)2 ≤ (1 +
re(x))2 = re(x+1)2 ≤ ‖x+1‖2 ≤
(X + 1)2.

(3) Let q11(x, n) be the following procedure:

(a) Show that ‖1 − 2(x + 1)−1‖2 =
‖x−1
x+1‖

2 ≤ e1
2 using procedure q12.

ii) Execute procedure IV:12 on 〈−1, q28, q29〉
and let 〈q5, q6〉 receive.

(1) Execute procedure IV:11 on 〈q30, q31,
q32, q33, q34〉 and let 〈q28, q29〉 receive.

(a) Execute procedure IV:24 on 〈e1,
1−e1

2 〉
and let 〈q30, q31〉 receive.

(b) Execute procedure IV:12 on 〈−1, q9,
q10〉 and let 〈q32, q33〉 receive.

(c) Let q34(x, n) be the following proce-
dure:

(i) Show that ‖−(1+(−2)(x+1)−1)‖2 =
‖x−1
x+1‖

2 ≤ e1
2 using procedure q12.

2) Let p(x, n) be the following procedure:

a) Show that 1
x ≡ 0 (err 1

x ) (err 1
re(x) ) (err 1

ε )

(err c).

3) Let q(x, n, δ) be the following procedure:

a) Using procedure q2, show that ∆+δ
y=x lnn(y)

1. = ∆+δ
y=x(lnn(1 + y−1

y+1 )− lnn(1− y−1
y+1 ))

2. = ∆+δ
y=x(lnn(1 + (1 + (−2)(y + 1)−1)) +

(−1) lnn(1 + (−1)(1 + (−2)(y + 1)−1)))

3. ≡ ((1 + (1 + (−2)(x + 1)−1))−1(0 +
(−2)(−1)(x + 1)−2(1 + 0) + (−1)((1 +
(−1)(1+(−2)(x+1)−1))−1·(0+(−1)(0+
(−2)(−1)(x+ 1)−2(1 + 0)))))) (err a

n +
b{δ})

4. = 1
x

b) Hence show that ∆+δ
y=x lnn(y) ≡

1
x (err a

n + b{δ}).

4) Yield the tuple 〈c, d, a, b, e, p, q〉.

Procedure IV:32(thu2208191330)

Objective

Choose a complex number A and non-negative ratio-
nal numbers X,D such that X +D < 1. The objec-
tive of the following instructions is to construct ra-
tional numbers l, d, a, b, a procedure p(x, n) to show
that ‖A(1 + x)A−1

n−1 ‖2 ≤ l2 when a complex number
x and a positive integer n such that ‖x‖2 ≤ X2 and
n > d are chosen, and a procedure q(x, n, δ) to show
that ∆+δ

y=x(1 + y)An ≡ A(1 + x)A−1
n−1 (err a

n + b{δ})
when in addition a complex number δ such that
0 < ‖δ‖2 ≤ D2 is chosen.

Implementation

1. Execute procedure III:52 on 〈{A+ 1}, X +D〉
and let 〈a1, b1, p1〉 receive.

2. Execute procedure III:55 on 〈{A− 1}, X〉 and
let 〈a2, p2〉 receive.

3. Let l = {A}a2.

4. Let d = 1.

5. Let a = 0.

6. Let b = a1b1
D2(1−b1) .

7. Let p(x, n) be the following procedure:

(a) Using procedure p2, show that A(1 +
x)A−1
n−1 ≡ 0

i. (err A(1 + x)A−1
n−1 )

ii. (err {A}a2)

iii. (err l).

8. Let q(x, n, δ) be the following procedure:

(a) For r ∈ [1 : n], do the following:

i. Show that ‖A+ 1‖2 ≤ {A+ 1}2.

ii. Hence show that ‖
(
A
r

)
(X + D)r‖2 ≤

(a1b1
r)2 using procedure p1.

iii. Hence show that ‖
(
A
r

)∑[0:r−1]
k

(
r
k

)
xkδr−2−k‖2

A. ≤ ‖
(
A
r

)
‖2(
∑[0:r−1]
k

(
r
k

)
XkDr−2−k)2
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B. = ‖
(
A
r

)
‖2( 1

D2

∑[0:r−1]
k

(
r
k

)
XkDr−k)2

C. ≤ ‖ 1
D2

(
A
r

)
(X +D)r‖2

D. ≤ (a1b1
r

D2 )2.

(b) Now show that ∆+δ
y=x(1+y)An ≡ A(1+x)A−1

n−1

i. (err 1
δ ((1 + x + δ)An − (1 + x)An ) − A(1 +

x)A−1
n−1 )

ii. (err 1
δ (
∑[0:n]
r

(
A
r

)
(x+δ)r−

∑[0:n]
r

(
A
r

)
xr)−

A
∑[0:n−1]
r

(
A−1
r

)
xr)

iii. (err 1
δ (
∑[0:n]
r

(
A
r

)
(
∑[0:r+1]
k

(
r
k

)
xkδr−k −

xr))−A
∑[0:n−1]
r

(
A−1
r

)
xr)

iv. (err
∑[0:n]
r

(
A
r

)∑[0:r]
k

(
r
k

)
xkδr−1−k −∑[0:n−1]

r (r + 1)
(
A
r+1

)
xr)

v. (err
∑[1:n]
r

(
A
r

)∑[0:r]
k

(
r
k

)
xkδr−1−k −∑[1:n]

r r
(
A
r

)
xr−1)

vi. (err δ(
∑[1:n]
r

(
A
r

)∑[0:r−1]
k

(
r
k

)
xkδr−2−k))

vii. (err δ(
∑[1:n]
r

a1b1
r

D2 ))

viii. (err δ( a1b1
D2(1−b1) ))

ix. (err a
n + b{δ}).

9. Yield the tuple 〈l, d, a, b, p, q〉.

Procedure IV:33(thu2208191432)

Objective

Choose a complex number A and non-negative ratio-
nal numbers X,D such that X +D < 1. The objec-
tive of the following instructions is to construct ra-
tional numbers l, d, a, b, a procedure p(x, n) to show
that ‖A(1 + x)A−1

n ‖2 ≤ l2 when a complex number
x and a positive integer n such that ‖x‖2 ≤ X2 and
n > d are chosen, and a procedure q(x, n, δ) to show
that ∆+δ

y=x(1 + y)An ≡ A(1 + x)A−1
n (err a

n + b{δ})
when in addition a complex number δ such that
0 < ‖δ‖2 ≤ D2 is chosen.

Implementation

1. Execute procedure III:52 on 〈{A}, X〉 and let
〈a1, b1, p1〉 receive.

2. Execute procedure III:55 on 〈{A− 1}, X〉 and
let 〈a2, p2〉 receive.

3. Execute procedure III:53 on 〈b1, 1〉 and let 〈a3,
b3, p3〉 receive.

4. Execute procedure IV:32 on 〈X,D〉 and let
〈a4, b4, c4, d4, p4, q4〉 receive.

5. Let l = {a}a2.

6. Let d = max(1, b4).

7. Let a = c4 + 2{A}a1a3.

8. Let b = d4.

9. Let p(x, n) be the following procedure:

(a) Using procedure p2, show that A(1 +
x)A−1
n ≡ 0

i. (err A(1 + x)A−1
n )

ii. (err {A}a2)

iii. (err l).

10. Let q(x, n, δ) be the following procedure:

(a) Show that ‖
(
A−1
n−1

)
xn−1‖2 ≤ (a1b1

n−1)2 us-
ing procedure p1.

(b) Show that ‖(n − 1)b1
n−1‖2 ≤ (a3b3

n−1)2 ≤
a3

2 using procedure p3.

(c) Hence show that ‖b1n−1‖2 ≤ ( a3
n−1 )2 ≤

( 2a3
n )2.

(d) Now using procedure q4, show that ∆+δ
y=x(1+

y)An

i. ≡ A(1 + x)A−1
n−1 (err c4

n + d4{δ})

ii. ≡ A(1 + x)A−1
n

A. (err A
(
A−1
n−1

)
xn−1)

B. (err {A}a1b1
n−1)

C. (err 2{A}a1a3
n ).

(e) Hence show that ∆+δ
y=x(1 + y)An ≡ A(1 +

x)A−1
n

i. (err c4
n + d4{δ}+ 2{A}a1a3

n )

ii. (err a
n + b{δ}).

11. Yield the tuple 〈l, d, a, b, p, q〉.

Declaration IV:3(thu2208191619)

The notation xan, where x, a are complex numbers
and n is a positive integer, will be used as a short-
hand for (1 + x−1

x+1 )an(1− x−1
x+1 )−an .
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Procedure IV:34(sat2408190819)

Objective

Choose three non-negative rational numbers A,X,
ε such that 0 < ε < 1. The objective of the fol-
lowing instructions is to construct positive rational
numbers B,C,D, and a procedure p(x, a, n) to show
that xan ≡ xa (err BCn) when a complex number x,
and integers a, n such that ‖x‖2 ≤ X2, ‖a‖2 ≤ A2,
re(x) ≥ ε, and n > D are chosen.

Implementation

1. Execute procedure IV:30 on 〈X, ε〉 and let 〈a1,
p1〉 receive.

2. Show that 0 < a1 < 1.

3. Execute procedure III:57 on 〈A, a1〉 and let
〈a2, b2, c2, p2〉 receive.

4. Execute procedure III:55 on 〈A, a1〉 and let
〈a3, p3〉 receive.

5. Let B = a3a2.

6. Let C = b2.

7. Let D = max(c2, A).

8. Let p(x, a, n) be the following procedure:

(a) Show that ‖x−1
x+1‖

2 ≤ a1
2 using procedure p1.

(b) If a ≥ 0, then do the following:

i. Using procedure III:49 and procedures p2,
p3, show that xan

A. = (1 + x−1
x+1 )an(1− x−1

x+1 )0−a
n

B. ≡ (1 + x−1
x+1 )an

(1− x−1
x+1 )0n

(1− x−1
x+1 )an

(err a3a2b2
n)

C. =
(1+ x−1

x+1 )a

(1− x−1
x+1 )a

D. = xa

(c) Otherwise do the following:

i. Using procedure III:49 and procedures p2,
p3, show that xan

A. = (1 + x−1
x+1 )

0−(−a)
n (1− x−1

x+1 )−an

B. ≡ (1+ x−1
x+1 )0n

(1+ x−1
x+1 )−a

n
(1− x−1

x+1 )−an (err a3a2b2
n)

C. =
(1− x−1

x+1 )−a
n

(1+ x−1
x+1 )−a

n

D. = ( 1
x )−a

E. = xa.

(d) Hence show that xan ≡ xa (err a3a2b2
n)

(err BCn).

9. Yield the tuple 〈B,C,D, p〉.

Procedure IV:35(sat2408191109)

Objective

Choose three non-negative rational numbers A,X, ε
such that 0 < ε < 1. The objective of the following
instructions is to construct positive rational num-
bers B,C, and a procedure p(x, a, b, n) to show that
xa+b
n ≡ xanx

b
n (err BCn) when complex numbers x,

a, b, and a positive integer n such that ‖x‖2 ≤ X2,
‖a‖2 ≤ A2, ‖b‖2 ≤ A2, and re(x) ≥ ε are chosen.

Implementation

1. Execute procedure IV:30 on 〈X, ε〉 and let 〈a1,
p1〉 receive.

2. Execute procedure III:54 on 〈A, a1〉 and let
〈a2, b2, p2〉 receive.

3. Execute procedure III:55 on 〈2A, a1〉 and let
〈a3, p3〉 receive.

4. Let B = a2a3(1 + a3).

5. Let C = b2.

6. Let p(x, a, b, n) be the following procedure:

(a) Using procedures p1, p2, p3, show that xa+b
n

i. = (1 + x−1
x+1 )a+b

n (1− x−1
x+1 )

−(a+b)
n

ii. ≡ (1 + x−1
x+1 )an(1 + x−1

x+1 )bn(1 −
x−1
x+1 )

(−a)+(−b)
n (err a2b2

na3)

iii. ≡ (1 + x−1
x+1 )an(1 + x−1

x+1 )bn(1 − x−1
x+1 )−an (1 −

x−1
x+1 )−bn (err a3

2a2b2
n)

iv. = xanx
b
n.

(b) Hence show that xa+b
n ≡ xanxbn (err BCn).

7. Yield the tuple 〈B,C, p〉.
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Procedure IV:36(sat2408191137)

Objective

Choose three non-negative rational numbers A,X,
ε such that 0 < ε < 1. The objective of the fol-
lowing instructions is to construct a positive ratio-
nal number D, and a procedure p(x, n, a, k) to show
that (xan)k ≡ 0 (err D) when complex numbers x,
a, k, and a positive integer n such that ‖x‖2 ≤ X2,
‖ka‖2 ≤ A2, and re(x) ≥ ε are chosen.

Implementation

1. Execute procedure IV:30 on 〈X, ε〉 and let 〈a1,
p1〉 receive.

2. Execute procedure III:55 on 〈A, a1〉 and let
〈a2, p2〉 receive.

3. Let D = a2
2.

4. Let p(x, n, a, k) be the following procedure:

(a) Using procedures p1, p2, show that (xan)k

i. = ((1 + x−1
x+1 )an(1− x−1

x+1 )−an )k

ii. = ((1 + x−1
x+1 )an)k((1− x−1

x+1 )−an )k

iii. ≡ 0((1− x−1
x+1 )−an )k (err a2

2)

iv. = 0.

(b) Hence show that (xan)k ≡ 0 (err D).

5. Yield the tuple 〈D, p〉.

Procedure IV:37(thu2908190744)

Objective

Choose three non-negative rational numbers A,X, ε
such that 0 < ε < 1. The objective of the follow-
ing instructions is to construct a positive rational
number D, and a procedure p(x, n, a) to show that
‖xan‖2 ≥ D2 when complex numbers x, a, and a pos-
itive integer n such that ‖x‖2 ≤ X2, ‖a‖2 ≤ A2, and
re(x) ≥ ε are chosen.

Implementation

1. Execute procedure IV:30 on 〈X, ε〉 and let 〈a1,
p1〉 receive.

2. Execute procedure III:56 on 〈A, a1〉 and let
〈a2, b2, p2〉 receive.

3. Let D = a2
2.

4. Let p(x, n, a) be the following procedure:

(a) Show that ‖x−1
x+1‖

2 ≤ a1
2 using procedure p1.

(b) Show that ‖(1 + x−1
x+1 )an‖2 ≥ a2

2 using proce-
dure p2.

(c) Show that ‖(1− x−1
x+1 )−an ‖2 ≥ a2

2 using pro-
cedure p2.

(d) Hence using declaration IV:3, show that
‖xan‖2

i. = ‖(1 + x−1
x+1 )an‖2‖(1− x−1

x+1 )−an ‖2

ii. ≥ a2
2a2

2

iii. = D2.

5. Yield the tuple 〈D, p〉.

Procedure IV:38(thu2908190802)

Objective

Choose three non-negative rational numbers A,X, ε
such that 0 < ε < 1. The objective of the following
instructions is to construct positive rational num-
bers B,C,D, and a procedure p(x, a, b, n) to show

that xa−bn ≡ xa
n

xb
n

(err BCn) when complex numbers

x, a, b, and a positive integer n such that ‖x‖2 ≤ X2,
‖a‖2 ≤ A2, ‖b‖2 ≤ A2, re(x) ≥ ε, and n > D are
chosen.

Implementation

1. Execute procedure IV:30 on 〈X, ε〉 and let 〈a1,
p1〉 receive.

2. Execute procedure III:57 on 〈A, a1〉 and let
〈a2, b2, c2, p2〉 receive.

3. Execute procedure III:56 on 〈A, a1〉 and let
〈a3, b3, p3〉 receive.

4. Execute procedure III:55 on 〈2A, a1〉 and let
〈a4, p4〉 receive.

5. Let B = a2a4(1 + 1
a3

).

6. Let C = b2.

7. Let D = max(c2, b3).

8. Let p(x, a, b, n) be the following procedure:

(a) Using procedures p1, p2, p3, p4, show that
xa−bn

i. = (1 + x−1
x+1 )a−bn (1− x−1

x+1 )
(−a)−(−b)
n
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ii. ≡ (1 + x−1
x+1 )a−bn

(1− x−1
x+1 )−a

n

(1− x−1
x+1 )−b

n
(err a4a2b2

n)

iii. ≡ (1+ x−1
x+1 )an

(1+ x−1
x+1 )bn

(1− x−1
x+1 )−a

n

(1− x−1
x+1 )−b

n
(err a2b2

n a4
a3

)

iv. =
xa
n

xb
n

.

(b) Hence show that xa−bn ≡ xa
n

xb
n

(err a4a2b2
n+

a2b2
n a4
a3

) (err BCn).

9. Yield the tuple 〈B,C,D, p〉.

Procedure IV:39(sat2408191538)

Objective

Choose three non-negative rational numbers A,X, ε
such that 0 < ε < 1. The objective of the following
instructions is to construct a positive rational num-
ber B,C, and a procedure p(x, n, a, k) to show that
(xan)k ≡ xakn (err BCn) when complex numbers x,
a, k, and a positive integer n such that ‖x‖2 ≤ X2,
‖ka‖2 ≤ A2, and re(x) ≥ ε are chosen.

Implementation

1. Execute procedure IV:30 on 〈X, ε〉 and let 〈a1,
p1〉 receive.

2. Execute procedure III:58 on 〈A, a1〉 and let
〈a2, b2, p2〉 receive.

3. Execute procedure III:55 on 〈A, a1〉 and let
〈a3, p3〉 receive.

4. Let B = 2a2a3.

5. Let C = b2.

6. Let p(x, n, a, k) be the following procedure:

(a) Using procedures p1, p2, p3, show that (xan)k

i. = ((1 + x−1
x+1 )an(1− x−1

x+1 )−an )k

ii. = ((1 + x−1
x+1 )an)k((1− x−1

x+1 )−an )k

iii. ≡ (1+ x−1
x+1 )akn ((1− x−1

x+1 )−an )k (err a2b2
na3)

iv. ≡ ((1+ x−1
x+1 )akn )1(1− x−1

x+1 )−akn (err a3a2b2
n)

v. = xakn .

(b) Hence show that (xan)k ≡ xakn (err BCn).

7. Yield the tuple 〈B,C, p〉.

Procedure IV:40(thu2208191610)

Objective

Choose a complex number f and two rational num-
bers X, ε such that 0 < ε < 1 and X ≥ 0.
Let g(f, x, n) be a shorthand for [2f(1 + x−1

x+1 )fn ·
(1 − x−1

x+1 )−f−1
n (x + 1)−2] + [2f(1 + x−1

x+1 )f−1
n · (1 −

x−1
x+1 )−fn (x+1)−2]. The objective of the following in-
structions is to construct rational numbers c, d, a, b,
e, a procedure p(x, n) to show that ‖g(f, x, n)‖2 ≤ c2
when a complex number x and a positive integer n
such that re(x) ≥ ε, ‖x‖2, and n > d are chosen, and
a procedure q(x, n, δ) to show that ∆+δ

y=xx
f
n ≡ g(f, x,

n) (err a
n+b{δ}) when in addition a complex number

δ such that 0 < ‖δ‖2 ≤ e2 is chosen.

Implementation

1) Execute the following in post-order:

a) Execute procedure IV:13 on 〈q7, q3, q4, q8, q5,
q6〉 and let 〈c, d, a, b, e, p, q〉 receive.

i) Execute procedure IV:30 on 〈X, ε〉 and let
〈e1, q9〉 receive.

ii) Execute procedure III:55 on 〈{f}, e1〉 and
let 〈e2, q10〉 receive.

iii) Let q7(x, n) be the following procedure:

(1) Show that ‖x−1
x+1‖

2 ≤ e1
2 using proce-

dure q9.

(2) Using procedure q10, show that ‖(1+(1+
(−2)(x+ 1)−1))fn‖2

(a) = ‖(1 + x−1
x+1 )fn‖2

(b) ≤ e2
2.

iv) Let q8(x, n) be the following procedure:

(1) Show that ‖x−1
x+1‖

2 ≤ e1
2 using proce-

dure q9.

(2) Using procedure q10, show that ‖(1−(1+
(−2)(x+ 1)−1))−fn ‖2

(a) = ‖(1− x−1
x+1 )−fn ‖2

(b) ≤ e2
2.

v) Execute procedure IV:11 on 〈q11, q12, q13,
q14, q15〉 and let 〈q3, q4〉 receive.

(1) Execute procedure IV:33 on 〈f, e1,
1−e1

2 〉
and let 〈q11, q12〉 receive.
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(2) Execute procedure IV:10 on 〈q16, q17,
q18, q19〉 and let 〈q13, q14〉 receive.

(a) Execute procedure IV:15 on 〈1, 1〉 and
let 〈q16, q17〉 receive.

(b) Execute procedure IV:12 on 〈−2, q20,
q21〉 and let 〈q18, q19〉 receive.

(i) Execute procedure IV:11 on 〈q22,
q23, q24, q25, q26〉 and let 〈q20, q21〉 re-
ceive.

(1) Execute procedure IV:18 on 〈1,
1 + ε, 1 + X〉 and let 〈q22, q23〉 re-
ceive.

(2) Execute procedure IV:10 on 〈q27,
q28, q29, q30〉 and let 〈q24, q25〉 re-
ceive.

(a) Execute procedure IV:15 on 〈1,
1〉 and let 〈q27, q28〉 receive.

(b) Execute procedure IV:16 on 〈1,
X, 1〉 and let 〈q29, q30〉 receive.

(3) Let q26(x, n) be the following pro-
cedure:

(a) Show that (1 + ε)2

(i) ≤ (1 + re(x))2

(ii) ≤ re(x+ 1)2

(iii) ≤ ‖x+ 1‖2

(iv) ≤ (X + 1)2.

(3) Let q15(x, n) be the following procedure:

(a) Hence show that ‖1 + (−2)(x +
1)−1‖2 = ‖x−1

x+1‖
2 ≤ e1

2 using pro-
cedure q9.

vi) Execute procedure IV:11 on 〈q31, q32, q33,
q34, q35〉 and let 〈q5, q6〉 receive.

(1) Execute procedure IV:33 on 〈−f, e1,
1−e1

2 〉 and let 〈q31, q32〉 receive.

(2) Execute procedure IV:12 on 〈−1, q13,
q14〉 and let 〈q33, q34〉 receive.

(3) Let q35(x, n) be the following procedure:

(a) Hence show that ‖−(1 + (−2)(x +
1)−1)‖2 = ‖x−1

x+1‖
2 ≤ e1

2 using pro-
cedure q9.

Procedure IV:41(thu2208191859)

Objective

Choose a complex number f and two rational num-
bers X, ε such that 0 < ε < 1 and X ≥ 0. The ob-
jective of the following instructions is to construct
rational numbers c, d, a, b, e, a procedure p(x, n) to
show that ‖fxf−1

n ‖2 ≤ c2 when a complex number x
and a positive integer n such that re(x) ≥ ε, ‖x‖2 ≤
X2, and n > d are chosen, and a procedure q(x, n,
δ) to show that ∆+δ

y=xx
f
n ≡ fxf−1

n (err a
n + b{δ})

when in addition a complex number δ such that
0 < ‖δ‖2 ≤ e2 is chosen.

Implementation

1) Execute procedure IV:30 on 〈X, ε〉 and let 〈a1,
p1〉 receive.

2) Execute procedure III:54 on 〈{f}+ 1, a1〉 and
let 〈a2, b2, p2〉 receive.

3) Execute procedure III:55 on 〈{f}+ 1, a1〉 and
let 〈a3, p3〉 receive.

4) Execute procedure III:53 on 〈b2, 1〉 and let 〈a4,
b4, p4〉 receive.

5) Execute procedure IV:40 on 〈f,X, ε〉 and let
〈p5, p6〉 receive.

6) Let t be subprocedure IV:42:0.

7) Execute procedure IV:14 on 〈t, p5, p6〉
and let 〈c, d, a, b, e, p, q〉 receive.

Subprocedure IV:42:0

Objective Choose a complex number f and two
rational numbers X, ε such that 0 < ε < 1 and
X ≥ 0. Let g(f, x, n) be a shorthand for [2f(1 +
x−1
x+1 )fn · (1− x−1

x+1 )−f−1
n (x+ 1)−2] + [2f(1 + x−1

x+1 )f−1
n ·

(1 − x−1
x+1 )−fn (x + 1)−2]. The objective of the fol-

lowing instructions is to construct a rational num-
ber h, and a procedure t(x, n) to show that g(f, x,
n) ≡ fxf−1

n (err h
n ) when a complex number x and

a positive integer n such that re(x) ≥ ε, ‖x‖2 ≤ X2,
and n > d are chosen.

Implementation

1. Let h = {f}a2a3a4(( 2
1+ε )

2 + 1).

2. Let t(x, n) be the following procedure:

(a) Show that ‖ 1
(x+1)2 ‖

2
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i. = 1
‖1+x‖4

ii. = 1
(re(1+x)2+im(x)2)2

iii. ≤ ( 1
1+ε )

4.

(b) Using procedures p1,p2,p3,p4, show that
[2f(1 + x−1

x+1 )fn · (1 − x−1
x+1 )−f−1

n (x + 1)−2] +

[2f(1 + x−1
x+1 )f−1

n · (1− x−1
x+1 )−fn (x+ 1)−2]

i. ≡ [2f(1 + x−1
x+1 )f−1

n (1 + x−1
x+1 )1

n · (1 −
x−1
x+1 )−f−1

n (x + 1)−2] + [2f(1 + x−1
x+1 )f−1

n ·
(1− x−1

x+1 )−fn (x+ 1)−2]

A. (err 2{f}a2b2
na3( 1

1+ε )
2)

B. (err 2{f}a2a3a4
n ( 1

1+ε )
2)

ii. ≡ [2f(1 + x−1
x+1 )f−1

n (1 + x−1
x+1 )1

n · (1 −
x−1
x+1 )−f−1

n (x + 1)−2] + [2f(1 + x−1
x+1 )f−1

n ·
(1− x−1

x+1 )−f−1
n (1− x−1

x+1 )1
n(x+ 1)−2]

A. (err 2{f}a3a2b2
n( 1

1+ε )
2)

B. (err 2{f}a3a2a4
n ( 1

1+ε )
2)

iii. = 2f(1+x−1
x+1 )f−1

n (1−x−1
x+1 )−f−1

n [(1+x−1
x+1 )1·

(x+ 1)−2 + (1− x−1
x+1 )1(x+ 1)−2]

iv. = 4f(1+ x−1
x+1 )f−1

n (1− x−1
x+1 )−f−1

n [(x+1)−2]

v. = f(1 + x−1
x+1 )f−1

n (1− x−1
x+1 )−f−1

n (1− x−1
x+1 )2

n

vi. ≡ f(1 + x−1
x+1 )f−1

n (1− x−1
x+1 )

−(f−1)
n

A. (err {f}a3a2b2
n)

B. (err {f}a3a2a4n )

vii. = fxf−1
n

(c) Hence show that [2f(1 + x−1
x+1 )fn · (1 −

x−1
x+1 )−f−1

n (x+ 1)−2] + [2f(1 + x−1
x+1 )f−1

n · (1−
x−1
x+1 )−fn (x+ 1)−2] ≡ fxf−1

n (err h
n ).

3. Yield the tuple 〈h, t〉.
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Chapter 15

Integral Arithmetic

Declaration IV:4(3.30)

The notation
∫ R
r
f(r, δr), where:

1. f(r, δr) is a procedure to construct a complex
number when complex numbers r, δr such that
P (r, δr) are chosen

2. R is a non-empty list of complex numbers such
that P (Rt, Rt+1 −Rt) for t ∈ [0 : |R| − 1]

will be used as a shorthand for
∑[0:|R|−1]
t f(Rt,

Rt+1 −Rt).

Procedure IV:42(3.86)

Objective

Choose the following:

1. A procedure f(r, δ) to construct a complex
number when complex numbers r, δr such that
P (r, δr) are chosen.

2. A procedure g(r, δ) to construct a complex
number when complex numbers r, δr such that
Q(r, δr) are chosen.

3. A non-empty list of complex numbers R such
that P (Rt, Rt+1 − Rt) and Q(Rt, Rt+1 − Rt)
for t ∈ [0 : |R| − 1].

The objective of the following instructions is to show

that
∫ R
r

(f(r, δr) + g(r, δr)) =
∫ R
r
f(r, δr) +

∫ R
r
g(r,

δr).

Implementation

1. Show that
∫ R
r

(f(r, δr) + g(r, δr))

(a) =
∑[0:|R|−1]
t (f(Rt, Rt+1−Rt)+g(Rt, Rt+1−

Rt))

(b) =
∑[0:|R|−1]
t f(Rt, Rt+1 − Rt) +∑[0:|R|−1]

t g(Rt, Rt+1 −Rt)

(c) =
∫ R
r
f(r, δr) +

∫ R
r
g(r, δr)

Procedure IV:43(3.87)

Objective

Choose the following:

1. A complex number a.

2. A procedure f(r, δ) to construct a complex
number when complex numbers r, δr such that
P (r, δr) are chosen.

3. A non-empty list of complex numbers R such
that P (Rt, Rt+1 −Rt) for t ∈ [0 : |R| − 1].

The objective of the following instructions is to show

that
∫ R
r
af(r, δr) = a

∫ R
r
f(r, δr).

Implementation

1. Show that
∫ R
r
af(r, δr)

(a) =
∑[0:|R|−1]
t af(Rt, Rt+1 −Rt)

(b) = a
∑[0:|R|−1]
t f(Rt, Rt+1 −Rt)

(c) = a
∫ R
r
f(r, δr)
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Procedure IV:44(3.88)

Objective

Choose the following:

1. A procedure f(r) to construct a complex num-
ber when a complex number r such that P (r)
is chosen.

2. A non-empty list of complex numbers R such
that P (Rt) for t ∈ [0 : |R| − 1].

3. A non-empty list of complex numbers S such
that P (St) for t ∈ [0 : |R|−1] and R|R|−1 = S0.

The objective of the following instructions is to show

that
∫ R_S

r
f(r)δr =

∫ R
r
f(r)δr +

∫ S
r
f(r)δr.

Implementation

1. Let T = R_S.

2. Show that
∫ T
r
f(r)δr

(a) =
∑[0:|T |−1]
t f(Tt)(Tt+1 − Tt)

(b) =
∑[0:|R|−1]
t f(Tt)(Tt+1 − Tt) +∑[|R|−1:|R|]

t f(Tt)(Tt+1−Tt)+
∑[|R|:|T |−1]
t f(Tt)(Tt+1−

Tt)

(c) =
∑[0:|R|−1]
t f(Rt)(Rt+1 − Rt) +

f(T|R|−1)(T|R|−T|R|−1)+
∑[|R|:|T |−1]
t f(St−|R|)·

(St+1−|R| − St−|R|)

(d) =
∑[0:|R|−1]
t f(Rt)(Rt+1 − Rt) +

f(T|R|−1)(S0−R|R|−1)+
∑[0:|S|−1]
t f(St)(St+1−

St)

(e) =
∫ R
r
f(r)δr +

∫ S
r
f(r)δr.

Procedure IV:45(3.34)

Objective

Choose the following:

1. A procedure f(r) to construct a complex num-
ber when a complex number r such that P (r)
is chosen.

2. A non-empty list of complex numbers R such
that P (Rt) for t ∈ [0 : |R| − 1].

The objective of the following instructions is to show

that
∫ R
r
δr ∆+δr

z=r f(z) = f(R|R|−1)− f(R0).

Implementation

1. Show that
∫ R
r
δr ∆δr

z=r f(z)

(a) =
∫ R
r
δr(

f(r+δr)−f(r)
δr

)

(b) =
∫ R
r

(f(r + δr)− f(r))

(c) =
∑[0:|R|−1]
k (f(Rk+1)− f(Rk))

(d) = f(R|R|−1)− f(R0).

Declaration IV:5(3.31)

The notation ∆X, where X is a list, will be used as
a shorthand for 〈X1 − X0, X2 − X1, · · · , X|X|−1 −
X|X|−2〉.

Procedure IV:46(fri3008190328)

Objective

Choose the following:

1. A non-negative rational number A.

2. A procedure q1(x, n, δ) to show that
∆+δ
y=xfn(y) ≡ f ′n(x) (err a1

n + b1{δ}) when two
complex numbers x, δ and a positive integer n
such that P (x), n > c1, and 0 < ‖δ‖2 < d1

2

are chosen.

The objective of the following instructions is to con-
struct the following:

1. Non-negative rational numbers a, b, c, d.

2. A procedure p(R,n) to show that∫ R
r
f ′n(r)δr ≡ fn(R|R|−1) − fn(R0) (err a

n +
bmax({∆R})) when an integer n and a non-
empty list of complex numbers R such that
P (Rt) and 0 < ‖Rt+1 − Rt‖2 < d2 for

t ∈ [0 : |R| − 1],
∫ R
r
{δr} ≤ A, and n > c

are chosen.

Implementation

1. Let a = a1A.

2. Let b = b1A.

3. Let c = c1.

4. Let d = d1.

5. Let p(R,n) be the following procedure:

(a) Using procedure q1, show that
∫ R
r
f ′n(r)δr
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i. =
∑[0:|R|−1]
k f ′n(Rk)(Rk+1 −Rk)

ii. ≡
∑0:|R|−1
k ∆

Rk+1−Rk

y=Rk
fn(y)(Rk+1 −Rk)

A. (err
∑0:|R|−1
k (a1n + b1{Rk+1 −

Rk}){Rk+1 −Rk})

B. (err (a1n +b1 max({∆R}))
∑0:|R|−1
k {Rk+1−

Rk})

C. (err (a1n + b1 max({∆R}))
∫ R
r
{δr})

D. (err (a1n + b1 max({∆R}))A)

E. (err a
n + bmax({∆R}))

iii. =
∑0:|R|−1
k

fn(Rk+(Rk+1−Rk))−fn(Rk)
Rk+1−Rk

·
(Rk+1 −Rk)

iv. =
∑0:|R|−1
k (fn(Rk+1)− fn(Rk))

v. = fn(R|R|−1)− fn(R0).

(b) Therefore show that
∫ R
r
f ′n(r)δr ≡

fn(R|R|−1)−fn(R0) (err a
n +bmax({∆R})).

6. Yield the tuple 〈a, b, c, d, p〉.

Procedure IV:47(fri3008190457)

Objective

Choose the following:

1. A non-negative rational number A.

2. A procedure q1(x, n, δ) to show that
∆+δ
y=xgn(y) ≡ g′n(x) (err a1

n + b1{δ}) when two
complex numbers x, δ and a positive integer n
such that P (x), n > c1, and 0 < ‖δ‖2 < d1

2

are chosen.

3. A procedure q2(x, n) to show that fn(x) ≡
0 (err a2) when a complex number x and a
positive integer n such that Q(x) and n > b2
are chosen.

4. A procedure q3(x, n) to show that Q(gn(x))
when a complex number x and a positive in-
teger n such that P (x) and n > c1 are chosen

The objective of the following instructions is to con-
struct the following:

1. Non-negative rational numbers a, b, c, d.

2. A procedure p(R,n) to show that∫ g(R)

r
fn(r)δr ≡

∫ R
r
fn(gn(r))g′n(r)δr (err a

n +

bmax({∆R})) when an integer n and a non-
empty list of complex numbers R such that
P (Rt) and 0 < ‖Rt+1 − Rt‖2 < d2 for

t ∈ [0 : |R| − 1],
∫ R
r
{δr} ≤ A, and n > c

are chosen.

Implementation

1. Let a = a1a2A.

2. Let b = b1a2A.

3. Let c = max(c1, b2).

4. Let d = d1.

5. Let p(R,n) be the following procedure:

(a) Using procedures q1, q2, q3, show that∫ gn(R)

r
fn(r)δr

i. =
∑[0:|R|−1]
k fn(gn(Rk))(gn(Rk+1) −

gn(Rk))

ii. =
∑[0:|R|−1]
k fn(gn(Rk))∆

Rk+1−Rk

y=Rk
gn(y)(Rk+1−

Rk)

iii. ≡
∑[0:|R|−1]
k fn(gn(Rk))g′n(Rk)(Rk+1 −

Rk)

A. (err
∑[0:|R|−1]
k a2(a1n + b1{Rk+1 −

Rk}){Rk+1 −Rk})

B. (err a2(a1n +b1 max({∆R}))
∑[0:|R|−1]
k {Rk+1−

Rk})

C. (err a2(a1n + b1 max({∆R}))
∫ R
r
{δr})

D. (err a2(a1n + b1 max({∆R}))A)

E. (err a
n + bmax({∆R}))

iv. =
∫ R
r
fn(gn(r))g′n(r)δr.

(b) Hence show that
∫ gn(R)

r
fn(r)δr ≡∫ R

r
fn(gn(r))g′n(r)δr (err a

n+bmax({∆R})).

6. Yield the tuple 〈a, b, c, d, p〉.

Procedure IV:48(fri3008190709)

Objective

Choose three rational numbers A,X, ε such that
0 < ε < 1 and X ≥ 0. The objective of the fol-
lowing instructions is to construct the following:

1. Non-negative rational numbers a, b, c, d.
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2. A procedure p(R,n) to show that
∫ R
r

δr
r ≡

lnn(R|R|−1) (err a
n + bmax({∆R})) when an

integer n and a non-empty list of complex
numbers R such that re(Rt) ≥ ε, ‖Rt‖2 ≤ X2

and 0 < ‖Rt+1−Rt‖2 < d2 for t ∈ [0 : |R|−1],

R0 = 1,
∫ R
r
{δr} ≤ A, and n > c are chosen.

Implementation

1. Execute procedure IV:31 on 〈X, ε〉 and let
〈· · · , q〉 receive.

2. Hence execute procedure IV:46 on 〈A, q〉 and
let 〈a, b, c, d, t〉 receive.

3. Let p(R,n) be the following procedure:

(a) Using procedure t, show that
∫ R
r

δr
r

i. ≡ lnn(R|R|−1) − lnn(R0) (err a
n +

bmax({∆R}))

ii. = lnn(R|R|−1)− lnn(1)

iii. = lnn(R|R|−1).

(b) Hence show that
∫ R
r

δr
r ≡

lnn(R|R|−1) (err a
n + bmax({∆R})).

4. Yield the tuple 〈a, b, c, d, p〉.

146



Part V

Matrix Arithmetic
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Chapter 16

Matrix Arithmetic

Declaration V:0(4.28)

The phrase ”matrix” will be used as a shorthand
for a list of equally lengthed lists of polynomials. In
particular, the phrase ”m × n matrix” will be used
as a shorthand for a length-m list of length-n lists
of polynomials.

Declaration V:1(4.29)

The notation AI,J , where A is a matrix and I, J
are lists of indicies, will be used as a shorthand for
〈(Aj)J for j ∈ I〉.

Declaration V:2(4.30)

The phrase ”A = B”, where A,B are m× n matri-
ces, will be used as a shorthand for ”Ai,j = Bi,j for
j ∈ [0 : n], for i ∈ [0 : m]”.

Procedure V:0(4.73)

Objective

Choose an m × n matrix A. The objective of the
following instructions is to show that A = A.

Implementation

1. Verify that Ai,j = Ai,j for j ∈ [0 : n], for
i ∈ [0 : m].

2. Hence verify that A = A.

Procedure V:1(4.74)

Objective

Choose two m× n matrices A,B such that A = B.
The objective of the following instructions is to show
that B = A.

Implementation

1. Verify that Ai,j = Bi,j for j ∈ [0 : n], for
i ∈ [0 : m].

2. Hence verify that Bi,j = Ai,j for j ∈ [0 : n],
for i ∈ [0 : m].

3. Hence verify that B = A.

Procedure V:2(4.75)

Objective

Choose three m × n matrices A,B,C such that
A = B and B = C. The objective of the follow-
ing instructions is to show that A = C.

Implementation

1. Verify that Ai,j = Bi,j for j ∈ [0 : n], for
i ∈ [0 : m].

2. Verify that Bi,j = Ci,j for j ∈ [0 : n], for
i ∈ [0 : m].

3. Hence verify that Ai,j = Ci,j for j ∈ [0 : n],
for i ∈ [0 : m].

4. Hence verify that A = C.
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Declaration V:3(4.31)

The notation A + B, where A,B are m × n ma-
trices, will be used as a shorthand for the list
〈〈Ai,j +Bi,j for j ∈ [0 : n]〉 for i ∈ [0 : m]〉.

Procedure V:3(4.76)

Objective

Choose four m × n matrices A,B,C,D such that
A = C and B = D. The objective of the following
instructions is to show that A+B = C +D.

Implementation

1. Verify that Ai,j = Ci,j for j ∈ [0 : n], for
i ∈ [0 : m].

2. Verify that Bi,j = Di,j for j ∈ [0 : n], for
i ∈ [0 : m].

3. Hence verify that A+B

(a) = 〈〈Ai,j+Bi,j for j ∈ [0 : n]〉 for i ∈ [0 : m]〉

(b) = 〈〈Ci,j+Di,j for j ∈ [0 : n]〉 for i ∈ [0 : m]〉

(c) = C +D.

Procedure V:4(4.77)

Objective

Choose three m × n matrices A,B,C. The objec-
tive of the following instructions is to show that
(A+B) + C = A+ (B + C).

Implementation

1. Verify that (A+B) + C

(a) = 〈〈(A + B)i,j + Ci,j for j ∈ [0 : n]〉 for i ∈
[0 : m]〉

(b) = 〈〈(Ai,j+Bi,j)+Ci,j for j ∈ [0 : n]〉 for i ∈
[0 : m]〉

(c) = 〈〈Ai,j+(Bi,j+Ci,j) for j ∈ [0 : n]〉 for i ∈
[0 : m]〉

(d) = 〈〈Ai,j + (B + C)i,j for j ∈ [0 : n]〉 for i ∈
[0 : m]〉

(e) = A+ (B + C).

Procedure V:5(4.78)

Objective

Choose two m × n matrices A,B. The objective of
the following instructions is to show that A + B =
B +A.

Implementation

1. A+B

(a) = 〈〈Ai,j+Bi,j for j ∈ [0 : n]〉 for i ∈ [0 : m]〉

(b) = 〈〈Bi,j+Ai,j for j ∈ [0 : n]〉 for i ∈ [0 : m]〉

(c) = B +A.

Declaration V:4(4.32)

The notation 0m×n will contextually be used as a
shorthand for the list 〈〈0 for j ∈ [0 : n]〉 for i ∈ [0 :
m]〉 where the natural numbers m,n are determined
by the context.

Procedure V:6(4.79)

Objective

Choose an m × n matrix A. The objective of the
following instructions is to show that 0 +A = A.

Implementation

1. Verify that 0 +A

(a) = 0m×n +A

(b) = 〈〈0i,j +Ai,j for j ∈ [0 : n]〉 for i ∈ [0 : m]〉

(c) = 〈〈0 +Ai,j for j ∈ [0 : n]〉 for i ∈ [0 : m]〉

(d) = 〈〈Ai,j for j ∈ [0 : n]〉 for i ∈ [0 : m]〉

(e) = A.

Declaration V:5(4.33)

The notation −A, where A is an m× n matrix, will
be used as a shorthand for the list 〈〈−Ai,j for j ∈
[0 : n]〉 for i ∈ [0 : m]〉.

Procedure V:7(4.80)

Objective

Choose two m× n matrices A,B such that A = B.
The objective of the following instructions is to show
that −A = −B.
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Implementation

1. Verify that Ai,j = Bi,j for j ∈ [0 : n], for
i ∈ [0 : m].

2. Hence verify that −A

(a) = 〈〈−Ai,j for j ∈ [0 : n]〉 for i ∈ [0 : m]〉

(b) = 〈〈−Bi,j for j ∈ [0 : n]〉 for i ∈ [0 : m]〉

(c) = −B.

Procedure V:8(4.81)

Objective

Choose a m × n matrix A. The objective of the
following instructions is to show that −A+A = 0.

Implementation

1. Verify that −A+A

(a) 〈〈(−A)i,j + Ai,j for j ∈ [0 : n]〉 for i ∈ [0 :
m]〉

(b) 〈〈−(Ai,j) + Ai,j for j ∈ [0 : n]〉 for i ∈ [0 :
m]〉

(c) 〈〈0 for j ∈ [0 : n]〉 for i ∈ [0 : m]〉

(d) = 0.

Declaration V:6(4.34)

The notation AB, where A is an m× n matrix and
B is an n×k matrix, will be used as a shorthand for

the list 〈〈
∑[0:n]
r Ai,rBr,j for j ∈ [0 : k]〉 for i ∈ [0 :

m]〉.

Procedure V:9(4.82)

Objective

Choose two m×n matrices A,C and two n× k ma-
trices B,D such that A = C and B = D. The ob-
jective of the following instructions is to show that
AB = CD.

Implementation

1. Verify that Ai,j = Ci,j for j ∈ [0 : n], for
i ∈ [0 : m].

2. Verify that Bi,j = Di,j for j ∈ [0 : k], for
i ∈ [0 : n].

3. Hence verify that AB

(a) = 〈〈
∑[0:n]
r Ai,rBr,j for j ∈ [0 : k]〉 for i ∈

[0 : m]〉

(b) = 〈〈
∑[0:n]
r Ci,rDr,j for j ∈ [0 : k]〉 for i ∈

[0 : m]〉

(c) = CD.

Procedure V:10(4.02)

Objective

Choose an m×n matrix, A, an n×p matrix, B, and
a p × q matrix, C. The objective of the following
instructions is to show that (AB)C = A(BC).

Implementation

1. Verify that (AB)C

(a) = 〈〈
∑[0:p]
r (AB)i,rCr,j for j ∈ [0 : q]〉 for i ∈

[0 : m]〉

(b) = 〈〈
∑[0:p]
r (

∑[0:n]
l Ai,lBl,r)Cr,j for j ∈ [0 :

q]〉 for i ∈ [0 : m]〉

(c) = 〈〈
∑[0:p]
r

∑[0:n]
l Ai,lBl,rCr,j for j ∈ [0 :

q]〉 for i ∈ [0 : m]〉

(d) = 〈〈
∑[0:n]
l

∑[0:p]
r Ai,lBl,rCr,j for j ∈ [0 :

q]〉 for i ∈ [0 : m]〉

(e) = 〈〈
∑[0:n]
l Ai,l

∑[0:p]
r Bl,rCr,j for j ∈ [0 :

q]〉 for i ∈ [0 : m]〉

(f) = 〈〈
∑[0:n]
l Ai,l(BC)l,j for j ∈ [0 : q]〉 for i ∈

[0 : m]〉

(g) = A(BC).

Declaration V:7(4.35)

The notation am×m, where a 6= 0 is a polynomial,
will contextually be used as a shorthand for the list
〈〈a[i = j] for j ∈ [0 : m]〉 for i ∈ [0 : m]〉.

Procedure V:11(4.84)

Objective

Choose an m × n matrix, A. The objective of the
following instructions is to show that 1A = A.
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Implementation

1. Verify that 1A

(a) = 1mA

(b) = 〈〈
∑[0:m]
r 1i,rAr,j for j ∈ [0 : n]〉 for i ∈

[0 : m]〉

(c) = 〈〈
∑[0:m]
r [i = r]Ar,j for j ∈ [0 : n]〉 for i ∈

[0 : m]〉

(d) = 〈〈Ai,j for j ∈ [0 : n]〉 for i ∈ [0 : m]〉

(e) = A.

Procedure V:12(4.85)

Objective

Choose an m× n matrix A, and two n× k matrices
B,C. The objective of the following instructions is
to show that A(B + C) = AB +AC.

Implementation

1. A(B + C)

(a) = 〈〈
∑[0:n]
r Ai,r(B + C)r,j for j ∈ [0 :

k]〉 for i ∈ [0 : m]〉

(b) = 〈〈
∑[0:n]
r Ai,r(Br,j + Cr,j) for j ∈ [0 :

k]〉 for i ∈ [0 : m]〉

(c) = 〈〈
∑[0:n]
r (Ai,rBr,j + Ai,rCr,j) for j ∈ [0 :

k]〉 for i ∈ [0 : m]〉

(d) = 〈〈
∑[0:n]
r Ai,rBr,j +

∑[0:n]
r Ai,rCr,j for j ∈

[0 : k]〉 for i ∈ [0 : m]〉

(e) = 〈〈
∑[0:n]
r Ai,rBr,j for j ∈ [0 : k]〉 for i ∈

[0 : m]〉+ 〈〈
∑[0:n]
r

∑[0:n]
r Ai,rCr,j for j ∈ [0 :

k]〉 for i ∈ [0 : m]〉

(f) = AB +AC.

Declaration V:8(4.36)

The phrase ”row i of A” and the notation Ai,∗,
where A is an m× n matrix and 0 ≤ i < m, will be
used as a shorthand for Ai,[0:n].

Declaration V:9(4.37)

The phrase ”column i of A” and the notation A∗,i,
where A is an m× n matrix and 0 ≤ i < n, will be
used as a shorthand for A[0:m],i.

Procedure V:13(4.00)

Objective

Choose an m × 2 matrix, A. Let deg(0) = ∞. Let
k = min(deg(A0,0),deg(A0,1)) and q = deg(A0,0).
The objective of the following instructions is to make
A0,1 = 0, deg(A0,0) ≤ k, and either leave A∗,0 un-
changed or make deg(A0,0) < q by a sequence of op-
erations whereby, in each step a polynomial times
either of the columns is added to the other.

Implementation

1. Let A be our working matrix.

2. While A0,1 6= 0, do the following:

(a) If deg(A0,0) ≤ deg(A0,1), then:

i. Subtract
(A0,1)deg(A0,1)

(A0,0)deg(A0,0)
λdeg(A0,1)−deg(A0,0)

times A0,0 from A0,1.

ii. Now verify that either A0,1’s degree has
decreased or A0,1 = 0.

(b) Otherwise, do the following:

i. Let p =
(A0,0)deg(A0,0)

(A0,1)deg(A0,1)
λdeg(A0,0)−deg(A0,1).

ii. If A0,0 = pA0,1, then do the following:

A. Add 1− p times A0,1 to A0,0.

B. Verify that now A0,0 = A0,1.

iii. Otherwise, do the following:

A. Verify that A0,0 6= pA0,1.

B. Add −p times A0,1 to A0,0.

iv. Therefore verify that A0,0 6= 0.

v. Also verify that A0,0’s degree has de-
creased.

3. Verify that A0,1 = 0.

4. Verify that the changes to A0,0, if any, have
decreased its degree.

5. If both operations are well-defined, then do the
following:

(a) Verify that all changes to A0,1 but the last
have decreased its degree.

(b) Verify that deg(A0,0) ≤ the degree of the
penultimate value of A0,1.
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6. Therefore verify that deg(A0,0) ≤ k.

7. If A∗,0 was changed, then do the following:

(a) Verify that A0,0 was also changed.

(b) Therefore verify that deg(A0,0) < q.

8. Yield the tuple 〈A〉.

Declaration V:10(4.01)

The phrase ”matrix diagonal” will be used as a
shorthand for matrix positions such that the row
index equals the column index.

Declaration V:11(4.02)

The phrase ”diagonal matrix” will be used to refer
to matrices with 0s in all off-diagonal positions.

Procedure V:14(4.01)

Objective

Choose a m×n matrix, A. The objective of the fol-
lowing instructions is to transform A into an m× n
diagonal matrix by a sequence of operations whereby
either a polynomial times any of the columns is
added to a different column, or a polynomial times
any of the rows is added to a different row.

Implementation

1. If m = 0 or n = 0, then do the following:

(a) Verify that A is an m× n diagonal ma-
trix.

(b) Yield the tuple 〈A〉.

2. Otherwise do the following:

3. Verify that m > 0 and n > 0.

4. Let A be our working matrix.

5. Now do the following:

(a) While A0,[1:n] 6= 0, do the following:

i. Select the m × 2 matrix whose top-right
entry coincides with the last non-zero en-
try of the first row

ii. Apply procedure V:13 on this submatrix.

iii. Verify that the top-left and top-right en-
tries of the submatrix are now non-zero
and zero respectively.

iv. If A∗,0 was modified by (5aii), then do the
following:

A. Verify that deg(A0,0) decreased.

B. Go back to (5).

(b) Now do the same operations as in (a), but
this time with the operations themselves re-
flected across the matrix’s diagonal.

6. Verify that A0,[1:n] = 0.

7. Also verify that A[1:m],0 = 0.

8. Apply procedure V:14 on the submatrix
A[1:m],[1:n].

9. Verify that (8)’s execution leaves the first row
and column unchanged.

10. Also verify that A[1:m],[1:n] is now a (m− 1)×
(n− 1) diagonal matrix.

11. Therefore verify that A is now an m× n
diagonal matrix.

12. Yield the tuple 〈A〉.

Declaration V:12(4.04)

The phrase ”tilt matrix” will be used to refer to
square matrices with only 1s on the diagonal, a sin-
gle polynomial off the diagonal, and 0s everywhere
else.

Procedure V:15(4.03)

Objective

Choose a procedure, A, and two non-negative inte-
gers m,n. The objective of the following instruc-
tions is, once A has been executed, to construct a
list of m×m tilts, M , and a list of n×n tilts, N such
that M|M |−1−i equals 1m after applying the ith row
operation carried out by A also on it, and Ni equals
1n after applying the ith row operation carried out
by A also on it.

Implementation

1. Make an empty list, N .

2. Augment procedure A so that each time a
polynomial x times a column i is added onto
column j, an n×n matrix that only has 1s on
its diagonal, and such that the only non-zero
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entry off its diagonal is x at position (i, j), is
appended onto N .

3. Make an empty list, M .

4. Also augment procedure A so that each time
a polynomial x times a row i is added onto
row j, an n × n matrix that only has 1s on
its diagonal, and such that the only non-zero
entry off its diagonal is x at position (j, i), is
prepended onto M .

5. Now run procedure A.

6. Yield the tuple 〈M,N〉.

Procedure V:16(4.04)

Objective

Choose a m×n matrix, A. The objective of the fol-
lowing instructions is to show that 1mA = A = A1n.

Implementation

1. For 0 ≤ r < m, do the following:

(a) For 0 ≤ t < n, do the following:

i. Verify that (1mA)r,t =
∑[0:m]
u (1m)r,uAu,t =

(1m)r,rAr,t = 1 ∗Ar,t = Ar,t.

2. Therefore verify that 1mA = A.

3. For 0 ≤ r < m, do the following:

(a) For 0 ≤ t < n, do the following:

i. Verify that (A1n)r,t =
∑[0:m]
u Ar,u(1n)u,t =

Ar,t(1n)t,t = Ar,t ∗ 1 = Ar,t.

4. Therefore verify that A1n = A.

Declaration V:13(4.05)

The notation A−1, where A is a list of m×m tilts,
will be used to refer to the result yielded by execut-
ing the following instructions:

1. Let A−1 be 〈〉.

2. For i in [0 : |A|], do the following:

(a) Let (j, k) be the position of the off diagonal
entry of Ai.

(b) Let B equal Ai but with entry (j, k) negated.

(c) Now prepend B onto A−1.

3. Yield 〈A−1〉.

Procedure V:17(4.05)

Objective

Choose a list of m×m tilts, A. The objective of the
following instructions is to show that A∗A

−1
∗ = 1m.

Implementation

1. Verify that |A| = |A−1|.

2. For i in [0 : |A|], do the following:

(a) Let (j, k) be the position of the off diagonal
entry of Ai.

(b) Let B = A−1
|A|−1−i.

(c) For r in [0 : m] and r 6= j, do the following:

i. For t in [0 : m], do the following:

A. Verify that (AiB)r,t =
∑[0:m]
u (Ai)r,uBu,t =

(Ai)r,rBr,t = 1 ∗Br,t = [r = t].

(d) For t in [0 : m] and t 6= k, do the following:

i. Verify that (AiB)j,t =
∑[0:m]
u (Ai)j,uBu,t =

(Ai)j,tBt,t = (Ai)j,t ∗ 1 = [j = t].

(e) Verify that (AiB)j,k =
∑[0:m]
u (Ai)j,uBu,k =

(Ai)j,jBj,k+(Ai)j,kBk,k = 1∗Bj,k+(Ai)j,k∗
1 = Bj,k + (Ai)j,k = 0.

(f) Therefore verify that AiB = 1m.

3. Therefore using procedure V:10 and procedure
V:16, verify that A∗A

−1
∗

(a) = A0 · · ·A|A|−2A|A|−1A
−1

0A
−1

1 · · ·A−1
|A|−1

(b) = A0 · · ·A|A|−3A|A|−21mA
−1

1A
−1

2 · · ·A−1
|A|−1

(c) = A0 · · ·A|A|−3A|A|−2A
−1

1A
−1

2 · · ·A−1
|A|−1

(d)
...

(e) = A01mA
−1
|A|−1

(f) = A0A
−1
|A|−1

(g) = 1m.

Procedure V:18(4.06)

Objective

Choose a list of m×m tilts, A. The objective of the
following instructions is to show that (A−1)−1 = A
and A−1

∗A∗ = 1m.
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Implementation

1. Verify that (A−1)−1 = A.

2. Therefore using procedure V:17, verify
that A−1

∗A∗ = A−1
∗(A

−1)−1
∗ = 1m.

Procedure V:19(4.07)

Objective

Choose a 2×2 diagonal matrix, A. The objective of
the following instructions is to construct polynomi-
als u, v and transform A into a 2×2 diagonal matrix,
A′, such that A′1,1 = uA′0,0 and A0,0 = vA′0,0 by a
sequence of operations whereby either a polynomial
times any of the columns is added to a different col-
umn, or a polynomial times any of the rows is added
to a different row.

Implementation

1. Add row 1 to row 0.

2. Now verify that A0,1 = A1,1.

3. Set A′ = A and let A′ be our working matrix.

4. Let 〈M,N〉 receive the results of executing
procedure V:15 on the pair 〈2, 2〉 and the fol-
lowing procedure:

(a) Execute procedure V:13 on A′.

5. Using (4), verify that M is empty.

6. Using (4) and (5), verify that AN∗ =
M∗AN∗ = A′.

7. Using (6), verify that A = A1n = AN∗N
−1
∗ =

A′N−1
∗.

8. Using (4), verify that A′0,1 = 0.

9. Using (4) and (7), verify that A0,0 =
A′0,0N

−1
∗0,0 +A′0,1N

−1
∗1,0 = A′0,0N

−1
∗0,0.

10. Using (4) and (7), verify that A1,1 = A0,1 =
A′0,0N

−1
∗0,1 +A′0,1N

−1
∗1,1 = A′0,0N

−1
∗0,1.

11. Using (2), verify that A1,0 = 0.

12. Using (6) and (11), verify that A′1,0 =
A1,0N∗0,0 + A1,1N∗1,0 = A1,1N∗1,0 =
A′0,0N

−1
∗0,1N∗1,0.

13. Using (6) and (11), verify that A′1,1 =
A1,0N∗0,1 + A1,1N∗1,1 = A1,1N∗1,1 =
A′0,0N

−1
∗0,1N∗1,1.

14. Subtract N−1
∗0,1N∗1,0 times row 0 from row

1.

15. Now using (14) and (12), verify that A′1,0 = 0.

16. Therefore verify that A′ is a 2× 2 diago-
nal matrix.

17. Let A = A′.

18. Yield 〈N−1
∗0,1N∗1,1, N

−1
∗0,0〉.

Procedure V:20(4.08)

Objective

Choose a m×n matrix, A such that min(m,n) > 0.
The objective of the following instructions is to de-
fine a list of polynomials u and transform A into
an m × n diagonal matrix such that Ak,k = ukA0,0

for k in [0 : min(m,n)] by a sequence of opera-
tions whereby either a polynomial times any of the
columns is added to a different column, or a poly-
nomial times any of the rows is added to a different
row.

Implementation

1. Let u = 〈1〉.

2. Execute procedure V:14 on A.

3. Verify that A is an m× n diagonal matrix.

4. For j in [1 : min(m,n)], do the following:

(a) Using (h), verify that Ak,k = ukA0,0 for k in
[0 : j].

(b) Set A′ = A.

(c) Execute procedure V:19 on A′〈0,j〉,〈0,j〉 and

let 〈uj , v〉 receive.

(d) Using (c), verify that A and A′ are the same
modulo positions 〈0, 0〉 and 〈j, j〉.

(e) Therefore verify that A′ is an m×n diagonal
matrix.

(f) Also, using (c), verify that A′j,j = ujA
′
0,0.

(g) Also, for k in [1 : j], do the following:

i. Using (a), (c), and (d), verify that A′k,k =
Ak,k = ukA0,0 = ukA

′
0,0v.

ii. Set uk = ukv.

iii. Hence verify that A′k,k = ukA
′
0,0.
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(h) Therefore verify that Ak,k = ukA0,0 for k in
[0 : j + 1].

(i) Now let A = A′.

5. Hence using (4h), verify that Ak,k =
ukA0,0 for k in [0 : min(m,n)].

6. Also, using (4e), verify that A is an m×n
diagonal matrix.

7. Yield 〈u〉.

Procedure V:21(4.09)

Objective

Choose a m × n matrix, A, and a n × k matrix,
B. Choose integers 0 ≤ a < m, 0 ≤ b < n, and
0 ≤ c < k. The objective of the following instruc-
tions is to show that

1. (AB)[0:a],[0:c] = A[0:a],[0:b]B[0:b],[0:c] +
A[0:a],[b:n]B[b:n],[0:c]

2. (AB)[0:a],[c:k] = A[0:a],[0:b]B[0:b],[c:k] +
A[0:a],[b:n]B[b:n],[c:k]

3. (AB)[a:m],[0:c] = A[a:m],[0:b]B[0:b],[0:c] +
A[a:m],[b:n]B[b:n],[0:c]

4. (AB)[a:m],[c:k] = A[a:m],[0:b]B[0:b],[c:k] +
A[a:m],[b:n]B[b:n],[c:k].

Implementation

1. For each 0 ≤ i < a, do the following:

(a) For each 0 ≤ j < c, do the following:

i. Verify that (AB)i,j =
∑[0:n]
p Ai,pBp,j =∑[0:b]

p Ai,pBp,j +
∑[b:n]
p Ai,pBp,j =∑[0:b]

p (A[0:a],[0:b])i,p(B[0:b],[0:c])p,j +∑[0:n−b]
p (A[0:a],[b:n])i,p(B[b:n],[0:c])p,j =

(A[0:a],[0:b]B[0:b],[0:c])i,j+(A[0:a],[b:n]B[b:n],[0:c])i,j .

2. Therefore verify that (AB)[0:a],[0:c] =
A[0:a],[0:b]B[0:b],[0:c] +A[0:a],[b:n]B[b:n],[0:c].

3. Using computations analogous to (1)
and (2), show items (2), (3), and (4) of
the objective.

Declaration V:14(4.06)

The phrase ”number of rows of A” and the notation
rows(A), where A is an m × n matrix, will be used
as a shorthand for m.

Declaration V:15(4.07)

The phrase ”number of columns of A” and the no-
tation cols(A), where A is an m× n matrix, will be
used as a shorthand for n.

Declaration V:16(4.08)

The notation diag(C), where C is a list of rational
square matrices, will be used to refer to the result
yielded by executing the following instructions:

1. Let E be a 0× 0 matrices.

2. Now for i in [0 : |C|]:

(a) Add cols(Ci) columns filled with zeros to the
right end of E.

(b) Add rows(Ci) rows filled with zeros to the
bottom end of E.

(c) Set the bottom-right corner of E equal to
Ci.

3. Yield the tuple 〈E〉.

Procedure V:22(4.10)

Objective

Choose a m×n matrix, A. Let A−1,−1 = 1. The ob-
jective of the following instructions is to construct
the list of polynomials v and transform A into an
m×n diagonal matrix such that Ak,k = vkAk−1,k−1

for k in [0 : min(m,n)] by a sequence of opera-
tions whereby either a polynomial times any of the
columns is added to a different column, or a poly-
nomial times any of the rows is added to a different
row.

Implementation

1. If min(m,n) = 0, then do the following:

(a) Verify that A is an m× n diagonal ma-
trix.

(b) Yield 〈〉.

2. Otherwise do the following:

(a) Apply procedure V:20 on A, and let 〈u〉 re-
ceive.

(b) Verify that A is an m× n diagonal matrix.

(c) Verify that Ak,k = ukA0,0 for k in [0 :
min(m,n)].
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(d) Let B,C be an (m − 1) × (n − 1) diagonal
matrix with u1:|u| on the diagonal.

(e) Let 〈M,N〉 receive the results of executing
procedure V:15 on the pair 〈m − 1, n − 1〉
and the following procedure:

i. Execute procedure V:22 on C and let 〈w〉
receive.

(f) Therefore verify that C is an (m−1)×(n−1)
diagonal matrix.

(g) Also verify that C = M∗BN∗.

(h) Let C−1,−1 = 1.

(i) Now using (ei), verify that Ck,k =
wkCk−1,k−1 for k in [0 : min(m,n)− 1].

(j) Therefore using (c), verify that A0,0C =
M∗(A0,0B)N∗ = M∗A[1:m],[1:n]N∗.

(k) Premultiply A by diag(1,Mk) for k in [|M | :
0].

(l) Postmultiply A by diag(1, Nk) for k in [0 :
|N |].

(m) Now verify that A[1:m],[1:n] = A0,0C.

(n) Now let u = 〈A0,0〉_w.

(o) Therefore verify that Ak,k = ukAk−1,k−1

for k in [0 : min(m,n)].

(p) Yield the tuple 〈u〉.
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Chapter 17

Compound Matrices

Declaration V:17(4.09)

The notation det(A), where A is a m ×m matrix,
will be used to refer to the result yielded by execut-
ing the following instructions:

1. If m = 0, then do the following:

(a) Yield the tuple 〈1〉.

2. Otherwise, do the following:

(a) Let hr = A[0:r]_[r+1,m],[1:m] for r in [0 : m].

(b) Yield the tuple 〈
∑[0:m]
r (−1)rAr,0 det(hr)〉.

Procedure V:23(4.11)

Objective

Choose a polynomial p. Choose two 1×m matrices,
B and C. Choose an integer 0 ≤ i < m. Choose a
m ×m matrix, A, such that its ith row is B + pC.
Let A′ be A but with the ith row replaced by B
and let A′′ be A but with the ith row replaced by
C. The objective of the following instructions is to
show that det(A) = det(A′) + p det(A′′).

Implementation

1. If m = 1, then do the following:

(a) Verify that i = 0.

(b) Therefore verify that det(A) = A0,0 =
B0,0 + pC0,0 = det(A′) + p det(A′′).

2. Otherwise, do the following:

(a) For r in [0 : i], do the following:

i. Verify that (A[0:r]_[r+1:m],[1:m])i−1,∗ =
B + pC.

ii. Verify that A′[0:r]_[r+1:m],[1:m] is
A[0:r]_[r+1:m],[1:m] with row i− 1 replaced
by B.

iii. Verify that A′′[0:r]_[r+1:m],[1:m] is
A[0:r]_[r+1:m],[1:m] with row i− 1 replaced
by C.

iv. Execute procedure V:23 on 〈p,B,C, i− 1,
A[0:r]_[r+1:m],[1:m]〉.

v. Therefore verify that det(A[0:r]_[r+1:m],[1:m]) =
det(A′[0:r]_[r+1:m],[1:m])+p det(A′′[0:r]_[r+1:m],[1:m]).

(b) For r in [i+ 1 : m], do the following:

i. Verify that (A[0:r]_[r+1:m],[1:m])i,∗ = B +
pC.

ii. Verify that A′[0:r]_[r+1:m],[1:m] is
A[0:r]_[r+1:m],[1:m] with row i replaced by
B.

iii. Verify that A′′[0:r]_[r+1:m],[1:m] is
A[0:r]_[r+1:m],[1:m] with row i replaced by
C.

iv. Execute procedure V:23 on 〈p,B,C, i,
A[0:r]_[r+1:m],[1:m]〉.

v. Therefore verify that det(A[0:r]_[r+1:m],[1:m]) =
det(A′[0:r]_[r+1:m],[1:m])+p det(A′′[0:r]_[r+1:m],[1:m]).

(c) Therefore using (av) and (bv), verify that
det(A)

i. =
∑[0:m]
r (−1)rAr,0 det(A[0:r]_[r+1:m],[1:m])
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ii. =
∑[0:i]
r (−1)rAr,0 det(A[0:r]_[r+1:m],[1:m])+

(−1)iAi,0 det(A[0:i]_[i+1:m],[1:m]) +∑[i+1:m]
r (−1)rAr,0 det(A[0:r]_[r+1:m],[1:m])

iii. =
∑[0:i]
r (−1)rAr,0(det(A′[0:r]_[r+1:m],[1:m])+

p det(A′′[0:r]_[r+1:m],[1:m])) + (−1)i(A′i,0 +

pA′′i,0) det(A[0:i]_[i+1:m],[1:m]) +∑[i+1:m]
r (−1)rAr,0(det(A′[0:r]_[r+1:m],[1:m])+

p det(A′′[0:r]_[r+1:m],[1:m]))

iv. =
∑[0:i]
r (−1)rAr,0 det(A′[0:r]_[r+1:m],[1:m])+

(−1)iA′i,0 det(A[0:i]_[i+1:m],[1:m]) +∑[i+1:m]
r (−1)rAr,0 det(A′[0:r]_[r+1:m],[1:m])+∑[0:i]
r (−1)rAr,0p det(A′′[0:r]_[r+1:m],[1:m])+

(−1)ipA′′i,0 det(A[0:i]_[i+1:m],[1:m]) +∑[i+1:m]
r (−1)rAr,0p det(A′′[0:r]_[r+1:m],[1:m])

v. =
∑[0:m]
r (−1)rA′r,0 det(A′[0:r]_[r+1:m],[1:m])+

p
∑[0:m]
r (−1)rA′′r,0 det(A′′[0:r]_[r+1:m],[1:m])

vi. = det(A′) + p det(A′′).

Procedure V:24(4.12)

Objective

Choose a polynomial p. Choose two m×1 matrices,
B and C. Choose an integer 0 ≤ i < m. Choose a
m×m matrix, A, such that its ith column is B+pC.
Let A′ be A but with the ith column replaced by B
and let A′′ be A but with the ith column replaced
by C. The objective of the following instructions is
to show that det(A) = det(A′) + p det(A′′).

Implementation

1. If i = 0, then verify that det(A)

(a) =
∑[0:m]
r (−1)rAr,0 det(A[0:r]_[r+1:m],[1:m])

(b) =
∑[0:m]
r (−1)r(B+pC)r,0 det(A[0:r]_[r+1:m],[1:m])

(c) =
∑[0:m]
r (−1)r(B)r,0 det(A[0:r]_[r+1:m],[1:m])+∑[0:m]

r (−1)r(pC)r,0 det(A[0:r]_[r+1:m],[1:m])

(d) =
∑[0:m]
r (−1)r(B)r,0 det(A[0:r]_[r+1:m],[1:m])+

p
∑[0:m]
r (−1)r(C)r,0 det(A[0:r]_[r+1:m],[1:m])

(e) =
∑[0:m]
r (−1)r(A′)r,0 det(A′[0:r]_[r+1:m],[1:m])+

p
∑[0:m]
r (−1)r(A′′)r,0 det(A′′[0:r]_[r+1:m],[1:m])

(f) = det(A′) + p det(A′′)

2. Otherwise, do the following:

(a) For r in [0 : m], do the following:

i. Execute procedure V:24 on 〈p,
B[0:r]_[r+1:m],0, C[0:r]_[r+1:m],0, i − 1,
A[0:r]_[r+1:m],[1:m]〉.

ii. Therefore verify that det(A[0:r]_[r+1:m],[1:m]) =
det(A′[0:r]_[r+1:m],[1:m])+p det(A′′[0:r]_[r+1:m],[1:m]).

(b) Therefore using (a), verify that det(A)

i. =
∑[0:m]
r (−1)rAr,0·det(A[0:r]_[r+1:m],[1:m])

ii. =
∑[0:m]
r (−1)rAr,0(det(A′[0:r]_[r+1:m],[1:m])+

p det(A′′[0:r]_[r+1:m],[1:m]))

iii. =
∑[0:m]
r (−1)rA′r,0 det(A′[0:r]_[r+1:m],[1:m])+∑[0:m]

r (−1)rA′′r,0p det(A′′[0:r]_[r+1:m],[1:m])

iv. = det(A′) + p det(A′′).

Procedure V:25(4.13)

Objective

Choose a m × m matrix, A. Choose an integer
0 < i < m. Let A′ be A with rows i − 1 and i
swapped. The objective of the following instructions
is to show that det(A′) = −det(A).

Implementation

1. If m = 2, then do the following:

(a) Verify that i = 1.

(b) Therefore verify that det(A′) = A′0,0A
′
1,1 −

A′1,0A
′
0,1 = A1,0A0,1 −A0,0A1,1 = −det(A).

2. Otherwise do the following:

(a) For r in [0 : i− 1], do the following:

i. Verify that A[0:r]_[r+1:m],[1:m] is the same
as A′[0:r]_[r+1:m],[1:m] but with rows i − 2
and i− 1 swapped.

ii. Execute procedure V:25 on 〈A[0:r]_[r+1:m],[1:m],
i− 1〉.

iii. Hence verify that det(A′[0:r]_[r+1:m],[1:m]) =

−det(A[0:r]_[r+1:m],[1:m]).

(b) For r in [i+ 1 : m], do the following:
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i. Verify that A[0:r]_[r+1:m],[1:m] is the same
as A′[0:r]_[r+1:m],[1:m] but with rows i − 1
and i swapped.

ii. Execute procedure V:25 on 〈A[0:r]_[r+1:m],[1:m],
i〉.

iii. Hence verify that det(A′[0:r]_[r+1:m],[1:m]) =

−det(A[0:r]_[r+1:m],[1:m]).

(c) Verify that det(A)

i. =
∑[0:m]
r (−1)rAr,0 det(A[0:r]_[r+1:m],[1:m])

ii. =
∑[0:i−1]
r (−1)rAr,0 det(A[0:r]_[r+1:m],[1:m])+

(−1)i−1Ai−1,0 det(A[0:i−1]_[i:m],[1:m]) +
(−1)iAi,0 det(A[0:i]_[i+1:m],[1:m]) +∑[i+1:m]
r (−1)rAr,0 det(A[0:r]_[r+1:m],[1:m])

iii. = −
∑[0:i−1]
r (−1)rA′r,0 det(A′[0:r]_[r+1:m],[1:m])−

(−1)iA′i,0 det(A′[0:i]_[i+1:m],[1:m]) −
(−1)i−1A′i−1,0 det(A′[0:i−1]_[i:m],[1:m]) −∑[i+1:m]
r (−1)rA′r,0 det(A′[0:r]_[r+1:m],[1:m])

iv. = −
∑[0:m]
r (−1)rA′r,0 det(A′[0:r]_[r+1:m],[1:m])

v. = −det(A′).

Procedure V:26(4.14)

Objective

Choose a m × m matrix, A. Choose an integer
0 < i < m. Let A′ be A with columns i − 1 and
i swapped. The objective of the following instruc-
tions is to show that det(A′) = − det(A).

Implementation

1. If i = 1, then verify that det(A)

(a) =
∑[0:m]
r (−1)rAr,0 det(A[0:r]_[r+1:m],[1:m])

(b) =
∑[0:m]
r (−1)rAr,0

∑[r+1:m]
t (−1)t−1At,1 ∗

det(A[0:r]_[r+1:t]_[t+1:m],[2:m]) +∑[0:m]
t (−1)tAt,0

∑[0:t]
r (−1)rAr,1 ∗

det(A[0:r]_[r+1:t]_[t+1:m],[2:m+1])

(c) =
∑[0:m]
t (−1)t−1At,1

∑[0:t]
r (−1)rAr,0 ∗

det(A[0:r]_[r+1:t]_[t+1:m],[2:m+1]) +∑[0:m]
r (−1)rAr,1

∑[r+1:m]
t (−1)tAt,0 ∗

det(A[0:r]_[r+1:t]_[t+1:m],[2:m+1])

(d) =
∑[0:m]
t (−1)t−1A′t,0

∑[0:t]
r (−1)rA′r,1 ∗

det(A′[0:r]_[r+1:t]_[t+1:m],[2:m+1]) +

∑[0:m]
r (−1)rA′r,0

∑[r+1:m]
t (−1)tA′t,1 ∗

det(A′[0:r]_[r+1:t]_[t+1:m],[2:m])

(e) = −(
∑[0:m]
r (−1)rA′r,0

∑[r+1:m]
t (−1)t−1A′t,1∗

det(A′[0:r]_[r+1:t]_[t+1:m],[2:m]) +∑[0:m]
t (−1)tA′t,0

∑[0:t]
r (−1)rA′r,1 ∗

det(A′[0:r]_[r+1:t]_[t+1:m],[2:m]))

(f) = −det(A′).

2. Otherwise do the following:

(a) Verify that i > 1.

(b) For r in [0 : m], do the following:

i. Execute procedure V:26 on 〈i − 1,
A[0:r]_[r+1:m],[1:m]〉.

ii. Therefore verify that det(A[0:r]_[r+1:m],[1:m]) =
−det(A′[0:r]_[r+1:m],[1:m]).

(c) Therefore using (bii), verify that det(A) =∑[0:m]
r (−1)rAr,0 · det(A[0:r]_[r+1:m],[1:m]) =∑[0:m]
r (−1)rA′r,0·(−det(A′[0:r]_[r+1:m],[1:m])) =

−det(A′).

Procedure V:27(4.15)

Objective

Choose integers 0 < i < m. Choose a m ×m ma-
trix, A, such that columns i− 1 and i are the same.
The objective of the following instructions is to show
that det(A) = 0.

Implementation

1. Let A′ be A with columns i−1 and i swapped.

2. Execute procedure V:26 on 〈A, i〉.

3. Also, verify that A′ = A.

4. Therefore verify that det(A) = det(A′) =
−det(A).

5. Therefore verify that det(A) = 0.

Procedure V:28(4.16)

Objective

Choose integers 0 < i < m. Choose a m×m matrix,
A, such that rows i− 1 and i are the same. The ob-
jective of the following instructions is to show that
det(A) = 0.
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Implementation

Instructions are analogous to those of procedure
V:27.

Procedure V:29(4.17)

Objective

Choose integers 0 ≤ i < m. Choose an integer
−i ≤ j < m − i. Choose a m ×m matrix, A. Let
A′ be A but with column i moved j places. The ob-
jective of the following instructions is to show that
det(A′) = (−1)j det(A).

Implementation

1. Let B = 〈A〉.

2. For k in [i : i+ j], do the following:

(a) Let B|B| be the result of swapping columns
k and k + 1 of B|B|−1.

(b) Using procedure V:26, verify that
det(B|B|−1) = −det(B|B|−2).

3. Verify that A′ = B|B|−1.

4. Therefore verify that det(A′) =
det(B|B|−1) = (−1)1 det(B|B|−2) = · · · =
(−1)j det(B0) = (−1)j det(A).

Procedure V:30(4.18)

Objective

Choose integers 0 ≤ i < m. Choose an integer
−i ≤ j < m − i. Choose a m ×m matrix, A. Let
A′ be A but with row i moved j places. The ob-
jective of the following instructions is to show that
det(A′) = (−1)j det(A).

Implementation

Instructions are analogous to those of procedure
V:29.

Declaration V:18(4.10)

The notation Ck(A), where A is a m×n matrix and
k is an integer such that 0 ≤ k ≤ min(m,n), will
be used to refer to the

(
m
k

)
×
(
n
k

)
matrix with the

following specification:

1. The rows are labeled by the colexicograph-
ically sorted list of increasing length-k se-
quences whose elements are picked from [0 :
m].

2. The columns are labeled by the colexicograph-
ically sorted list of increasing length-k se-
quences whose elements are picked from [0 : n].

3. For each row label I: For each column label
J : The entry at position (I, J) is det(AI,J).

Declaration V:19(4.11)

The notation AI,J will be used to refer to the entry
of A with row label I and column label J .

Procedure V:31(4.19)

Objective

Choose two integers 0 ≤ k ≤ m. The objec-
tive of the following instructions is to show that
Ck(1m) = 1(m

k ).

Implementation

1. For each row label I of Ck(1m), for each col-
umn label J of Ck(1m), do the following:

(a) If I = J , then do the following:

i. Verify that ((1m)I,J)i,j = ((1m)J,J)i,j =
(1m)Ji,Jj = [Ji = Jj ] = [i = j] for
0 ≤ i < k, for 0 ≤ j < k.

ii. Therefore verify that (Ck(1m))I,J = 1k.

iii. Therefore verify that (Ck(1m))I,J =
det((1m)I,J) = det(1k) = 1.

(b) Otherwise, do the following:

i. Verify that I 6= J .

ii. Let i be the index of an element of I that
is not an element of J .

iii. Now verify that (1m)Ii,j = [Ii = j] = 0,
for each j in J .

iv. Therefore verify that ((1m)I,J)i,∗ = 01×k.

v. Therefore verify that (Ck(1m))I,J =
det((1m)I,J) = 0.

2. Therefore verify that Ck(1m) = 1(m
k ).
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Procedure V:32(4.20)

Objective

Choose an integer 0 ≤ k ≤ min(m,n). Choose a
m × m tilt, A, such that the off diagonal entry is
the polynomial p at (i, j). Also choose a m × n
matrix, B. The objective of the following instruc-
tions is to construct a

(
m
k

)
×
(
m
k

)
matrix D such that

Ck(AB) = DCk(B).

Implementation

1. Let D = Ck(1m) = 1(m
k ).

2. Verify that AB equals B, but with its row i
having p times B’s row j added to it.

3. Go through the row labels, I, of Ck(AB) and
do the following:

(a) If i /∈ I, then do the following:

i. Verify that (AB)I,∗ = BI,∗.

ii. Therefore for each column label J , ver-
ify that Ck(AB)I,J = det((AB)I,J) =

det(BI,J) = Ck(B)I,J .

iii. Therefore verify that (Ck(AB))I,∗ =
(Ck(B))I,∗.

(b) Otherwise, if i ∈ I, then:

i. Let I ′ be I but with an in-place replace-
ment of i by j.

ii. For each column label J : Using pro-
cedure V:24, verify that Ck(AB)I,J =

det((AB)I,J) = det(BI,J) + p ∗det(BI′,J).

iii. If j ∈ I, then do the following:

A. Verify that the sequence I ′ contains two
js.

B. For each column label J : Using proce-
dure V:28 verify that det(BI′,J) = 0.

C. Therefore for each column label J : ver-
ify that Ck(AB)I,J = det(BI,J) =

Ck(B)I,J .

D. Therefore verify that Ck(AB)I,∗ =

Ck(B)I,∗.

iv. Otherwise if j /∈ I, do the following:

A. Let l be the signed number of places
that the j introduced above needs to be

moved in order to make I ′ an increasing
sequence.

B. Let I ′′ be obtained from I ′ by moving
the integer j in I ′ by l places.

C. For each column label J : Using pro-
cedure V:30, verify that det(BI′,J) =
(−1)l det(BI′′,J).

D. Therefore for each column label J : Ver-
ify that Ck(AB)I,J = det(BI,J) +

p ∗ det(BI′,J) = det(BI,J) + (−1)lp ∗
det(BI′′,J).

E. Verify that I ′′ is a row label of Ck(B).

F. Therefore for each column label J : Ver-
ify that Ck(AB)I,J = det(BI,J) +

(−1)lp ∗ det(BI′′,J) = Ck(B)I,J +

(−1)lp ∗ Ck(B)I′′,J .

G. Therefore verify that (Ck(AB))I,∗ =
(Ck(B))I,∗ + (−1)lp(Ck(B))I′′,∗.

H. Set DI,I′′ to (−1)lp.

(c) Therefore verify that Ck(AB)I,∗ =

DI,∗Ck(B).

4. Therefore verify that Ck(AB) = DCk(B).

5. Yield 〈D〉.

Procedure V:33(4.21)

Objective

Choose an m × n diagonal matrix, A. Also choose
an n×n matrix, B. Also choose an integer 0 ≤ k ≤
min(m,n). The objective of the following instruc-
tions is to construct an

(
m
k

)
×
(
n
k

)
diagonal matrix

D such that Ck(AB) = DCk(B).

Implementation

1. Let D = Ck(0m×n) = 0(m
k )×(n

k).

2. Verify that AB equals B[0:min(m,n)],∗ with each
row i multiplied by Ai,i.

3. Go through the row labels, I, of Ck(AB) and
do the following:

(a) If Ik < min(m,n), then do the following:

i. Verify that every element of I is less than
min(m,n).
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ii. Let A0 = A.

iii. For i in [0 : k]: Let Ai+1 equal Ai but with
position (Ii, Ii) set to 1.

iv. For each column label J : Repeatedly using
procedure V:24, verify that Ck(AB)I,J

A. = det((AB)I,J)

B. = det((A0B)I,J)

C. = AI0,I0 det((A1B)I,J)

D. = AI0,I0AI1,I1 det((A2B)I,J)

E.
...

F. = AI0,I0AI1,I1 · · ·AIk−1,Ik−1
det((AkB)I,J)

G. = AI0,I0AI1,I1 · · ·AIk−1,Ik−1
det(BI,J)

H. = AI0,I0AI1,I1 · · ·AIk−1,Ik−1
Ck(B)I,J .

v. Therefore verify that (Ck(AB))I,∗ =
AI1,I1AI1,I1 · · ·AIk,Ik ∗ (Ck(B))I,∗.

vi. Set DI,I to AI0,I0AI1,I1 · · ·AIk−1,Ik−1
.

(b) Otherwise if Ik ≥ min(m,n), then do the
following:

i. Using the precondition, verify that
AIk,∗ = 01×n.

ii. Therefore verify that (AB)Ik,∗ = 01×n.

iii. Therefore verify that ((AB)I,∗)k,∗ = 01×n.

iv. Therefore for each column label J : verify
that Ck(AB)I,J = det((AB)I,J) = 0.

v. Therefore verify that (Ck(AB))I,∗ is
zero.

(c) Therefore verify that Ck(AB)I,∗ =

DI,∗Ck(B).

4. Verify that D is diagonal.

5. Verify that Ck(AB) = DCk(B).

6. Yield 〈D〉.

Procedure V:34(4.22)

Objective

Choose an integer 0 ≤ k ≤ min(m,n). Choose a
m×m tilt, A. Also choose a m× n matrix, B. The
objective of the following instructions is to show that
Ck(AB) = Ck(A)Ck(B).

Implementation

1. Execute procedure V:32 on matrices A and 1m
and let 〈D〉 receive.

2. Using procedure V:31, verify that Ck(A) =
Ck(A1m) = DCk(1m) = D1(m

k ) = D.

3. Execute procedure V:32 on 〈A,B〉 and let 〈D′〉
receive.

4. Verify that D′ = D = Ck(A).

5. Therefore verify that Ck(AB) =
D′Ck(B) = Ck(A)Ck(B).

Procedure V:35(4.23)

Objective

Choose an integer 0 ≤ k ≤ min(m,n). Choose an
n×n tilt, A. Also choose a m×n matrix, B. The ob-
jective of the following instructions is to show that
Ck(BA) = Ck(B)Ck(A).

Implementation

Instructions are analogous to those of procedure
V:34.

Procedure V:36(4.24)

Objective

Choose an integer 0 ≤ k ≤ min(m,n). Choose an
m× n diagonal matrix, A. Also choose a n× n ma-
trix, B. The objective of the following instructions
is to show that Ck(AB) = Ck(A)Ck(B).

Implementation

Instructions are analogous to those of procedure
V:34.

Procedure V:37(4.25)

Objective

Choose a m × n matrix, A. Let D−1,−1 = 1. The
objective of the following instructions is to construct
a list of m×m tilts, M , an m× n diagonal matrix,
D, a list of polynomials, v, and a list of n×n tiltss,
N , such that M∗AN∗ = D, A = M−1

∗DN
−1
∗, and

Di,i = viDi−1,i−1 for i in [0 : min(m,n)].
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Implementation

1. Let D be a copy of A.

2. Let 〈M,N〉 receive the results of executing
procedure V:15 on the pair 〈m,n〉 and the fol-
lowing procedure:

(a) Execute procedure V:22 on the matrix D
and let 〈v〉 receive.

3. Verify that Di,i = viDi−1,i−1 for i in [0 :
min(m,n)].

4. Verify that M∗AN∗ = D.

5. Hence verify that A = 1mA1n =
M−1

∗M∗AN∗N
−1
∗ = M−1

∗DN
−1
∗.

6. Yield the tuple 〈M,D, v,N〉.

Procedure V:38(4.26)

Objective

Choose integers 0 ≤ k ≤ min(m,n, p). Choose a
m × n matrix, A. Also choose a n × p matrix, B.
The objective of the following instructions is to show
that Ck(AB) = Ck(A)Ck(B).

Implementation

1. Execute procedure V:37 on A and let 〈M,D, ,
N〉 receive.

2. Using repeated applications of procedure V:36,
verify that Ck(AB)

(a) = Ck(M−1
0 · · ·M−1

|M |−1DN
−1

0 · · ·N−1
|N |−1B)

(b) = Ck(M−1
0) · · ·Ck(M−1

|M |−1) ∗ Ck(D) ∗
Ck(N−1

0) · · ·Ck(N−1
|N |−1)Ck(B)

(c) = Ck(M−1
0 · · ·M−1

|M |−1DN
−1

0 · · ·N−1
|N |−1)Ck(B)

(d) = Ck(A)Ck(B).

Procedure V:39(4.27)

Objective

Choose a m×m matrix, A. Let D be a copy of A.
Execute procedure V:22 on D. The objective of the
following instructions is to show that det(A) is the
product of the diagonal entries of D.

Implementation

1. Execute procedure V:37 on A and let 〈M,D, ,
N〉 receive.

2. Using procedure V:38, verify that det(A)

(a) = Cm(A)

(b) = Cm(M−1
0 · · ·M−1

|M |−1DN
−1

0 · · ·N−1
|N |−1)

(c) = Cm(M−1
0) · · ·Cm(M−1

|M |−1)Cm(D)Cm(N−1
0)

· · ·Cm(N−1
|N |−1)

(d) = 1 · · · 1Cm(D)1 · · · 1 = Cm(D)

(e) = det(D)

(f) =
∏[0:m]
r Dr,r.

Declaration V:20(4.12)

The notation AT , where A is a m × n matrix, will
be used to refer to the n × m matrix such that
AT i,j = Aj,i for i in [0 : n], for j in [0 : m].

Procedure V:40(4.28)

Objective

Choose a m× n matrix, A, and a n× k matrix, B.
The objective of the following instructions is to show
that BTAT = (AB)T .

Implementation

1. Verify that BTAT and (AB)T have dimensions
k ×m.

2. For i in [0 : k]: For j in [0 : m]:

(a) Verify that (BTAT )i,j =
∑[0:n]
l Bl,iAj,l =∑[0:n]

l Aj,lBl,i = (AB)j,i = ((AB)T )i,j .

3. Therefore verify that BTAT = (AB)T .

Procedure V:41(4.29)

Objective

Choose a m × m matrix, A. The objective of the
following instructions is to show that det(AT ) =
det(A).

Implementation

1. Execute procedure V:37 on A and let 〈M,D, ,
N〉 receive.
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2. Therefore using procedures procedure V:39
and procedure V:40, verify that det(AT )

(a) = det((M−1
0 · · ·M−1

|M |−1DN
−1

0 · · ·N−1
|N |−1)T )

(b) = det((N−1
|N |−1)T · · · (N−1

0)TDT (M−1
|M |−1)T

· · · (M−1
0)T )

(c) = det(DT )

(d) = det(D)

(e) = det(M−1
0 · · ·M−1

|M |−1DN
−1

0 · · ·N−1
|N |−1)

(f) = det(A).

Procedure V:42(4.30)

Objective

Choose a m× n matrix, A, and an integer 0 ≤ k ≤
min(m,n). The objective of the following instruc-
tions is to show that Ck(A)T = Ck(AT ).

Implementation

1. For each row label I of Ck(AT ), do the follow-
ing:

(a) For each column label J of Ck(AT ), do the
following:

i. Using procedure V:41, verify that
(Ck(AT ))I,J = det((AT )I,J) =
det(AJ,I) = (Ck(A))J,I .

2. Therefore verify that (Ck(A))T =
(Ck(AT )).
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Chapter 18

Polynomials and Normal Forms

Procedure V:43(4.31)

Objective

Choose a m × n rational matrix, A, and a m × p
rational matrix, B. Execute procedure V:37 on A
and let 〈M,D, ,N〉 receive the result. If the indices
of the rows of D that are entirely zero are also the
indices of the rows of M∗B that are entirely zero,
then the objective of the following instructions is
to construct a n × p rational matrix E such that
AE = B.

Implementation

1. Verify that A = M−1
∗DN

−1
∗.

2. Verify that M−1
∗, D, and N−1

∗ are rational
matrices.

3. Let C be an n×p matrix with its ith row given
as follows:

(a) If Di,i 6= 0, then do the following:

i. Let row i be row i of M∗B divided by Di,i.

(b) Otherwise, do the following:

i. Choose p rational numbers to fill up
the row.

4. Verify that DC = M∗B.

5. Let E be N∗C.

6. Therefore using procedure V:17, ver-
ify that AE = M−1

∗DN
−1
∗E =

M−1
∗DN

−1
∗N∗C = M−1

∗D1nC =
M−1

∗DC = M−1
∗M∗B = 1mB = B.

7. Yield the tuple 〈E〉.

Declaration V:21(4.13)

The notation A\B will be used to refer to the result
yielded by executing procedure V:43 on 〈A,B〉.

Procedure V:44(4.32)

Objective

Choose a m × n rational matrix, A, and a p × n
rational matrix, B. Execute procedure V:37 on A
and let 〈M,D, ,N〉 receive the result. If the indices
of the columns of D that are entirely zero are also
the indices of the columns of BN∗ that are entirely
zero, then the objective of the following instructions
is to construct a p×m rational matrix E such that
EA = B.

Implementation

Instructions are analogous to those of procedure
V:43.

Declaration V:22(4.14)

The notation A/B will be used to refer to the result
yielded by executing procedure V:44 on 〈A,B〉.

Procedure V:45(4.33)

Objective

Choose a m × n rational matrix, A, a n × p ratio-
nal matrix, E, and a m× p rational matrix, B such
that AE = B. Execute procedure V:37 on A and
let 〈M,D, ,N〉 receive the result. If the indices of
the rows of D that are entirely zero are not also the
indices of the rows of M∗B that are entirely zero,
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then the objective of the following instructions is to
show that 0 6= 0.

Implementation

1. Verify that M−1
∗DN

−1
∗E = AE = B.

2. Therefore verify that DN−1
∗E = M∗B.

3. Let i be an integer such that Di,∗ is zero and
yet (M∗B)i,∗ is not zero.

4. Verify that Di,∗ = Di,∗N
−1
∗E =

(DN−1
∗E)i,∗ = (M∗B)i,∗.

5. Let j be an integer such that (M∗B)i,j 6= 0.

6. Now verify that 0 = Di,j = (M∗B)i,j 6= 0.

Procedure V:46(4.34)

Objective

Choose a p ×m rational matrix, E, a m × n ratio-
nal matrix, A, and a p× n rational matrix, B such
that EA = B. Execute procedure V:37 on A and
let 〈M,D, ,N〉 receive the result. If the indices of
the columns of D that are entirely zero are not also
the indices of the columns of BN∗ that are entirely
zero, then the objective of the following instructions
is to show that 0 6= 0.

Implementation

Instructions are analogous to those of procedure
V:45.

Procedure V:47(4.35)

Objective

Choose two m×m rational matrices, A and B, such
that AB = 1m. The objective of the following in-
structions is to show that either 0 = 1 or BA = 1m.

Implementation

1. Execute procedure V:37 on B and let 〈M,D, ,
N〉 receive the result.

2. Verify that B = M−1
∗DN

−1
∗.

3. If D has a zero on its diagonal, then do the
following:

(a) Using procedure V:39, verify that
det(1m) = det(AB) = det(A) det(B) =
det(A) det(D) = det(A) ∗ 0 = 0.

(b) Also verify that det(1m) = 1m = 1.

(c) Therefore verify that 0 = 1.

(d) Abort procedure.

4. Otherwise do the following:

(a) Verify that D does not have a zero on its
diagonal.

(b) Verify that B\1m = 1m(B\1m) =
AB(B\1m) = A(B(B\1m)) = A1m = A.

(c) Therefore verify that BA = B(B\1m) =
1m.

Procedure V:48(4.36)

Objective

Choose an m×m matrix, M , and an m×m rational
matrix, B. The objective of the following instruc-
tions is to construct a m×m matrix, Q, and a m×m
rational matrix, R, such that M = (λ1m−B)Q+R.

Implementation

1. Let M0λ
b +M1λ

b−1 + · · ·+Mbλ
0 = M , where

the Mi are m×m rational matrices.

2. Now let R = BbM0 +Bb−1M1 + · · ·+B0Mb.

3. Let Q =
∑[1:b]
k (λk−11mB

0 +λk−21mB
1 + · · ·+

λ01mB
k−1)Mk.

4. Verify that M − R = (λ1m −
B)
∑[1:b]
k (λk−11mB

0 + λk−21mB
1 + · · · +

λ01mB
k−1)Mk = (λ1m −B)Q.

5. Verify that M = (λ1m −B)Q+R.

6. Yield the tuple 〈Q,R〉.

Procedure V:49(4.37)

Objective

Choose an m×m matrix, M , and an m×m rational
matrix, B. The objective of the following instruc-
tions is to construct a m×m matrix, Q, and a m×m
rational matrix, R, such that M = Q(λ1m−B)+R.

Implementation

The instructions are analogous to those of procedure
V:48.
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Procedure V:50(4.38)

Objective

Choose two m × m rational matrices, B,A, and
two lists of m × m tilts such that λ1m − B =
M(λ1m − A)N . The objective of the following in-
structions is to either show that 0 = 1 or to con-
struct m×m rational matrices R1 and R3 such that
1m = R1R3 and B = R1AR3.

Implementation

1. Verify that (λ1m − B)N−1 = M(λ1m −
A)NN−1 = M(λ1m −A)1m = M(λ1m −A).

2. Execute procedure V:49 on 〈M,B〉 and let
〈Q1, R1〉 receive.

3. Verify that M = (λ1m −B)Q1 +R1.

4. Execute procedure V:49 on 〈N−1, A〉 and let
〈Q2, R2〉 receive.

5. Verify that N−1 = Q2(λ1m −A) +R2.

6. By substituting M and N−1 into (2), ver-
ify that (λ1m − B)(Q2(λ1m − A) + R2) =
((λ1m −B)Q1 +R1)(λ1m −A).

7. By rearranging both sides, verify that (λ1m −
B)(Q2−Q1)(λ1m−A) = R1(λ1m−A)−(λ1m−
B)R2.

8. By equating the coefficients of different powers
of λ both sides, verify that Q2 −Q1 = 0m×m.

9. Verify that R1(λ1m − A) − (λ1m − B)R2 =
(λ1m − B)(Q2 − Q1)(λ1m − A) = (λ1m −
B)0m×m(λ1m −A) = 0m×m.

10. Therefore by adding (λ1m − B)R2 to both
sides, verify that λR1−R1A = R1(λ1m−A) =
(λ1m −B)R2 = λR2 −BR2.

11. By equating the coefficients of λ on both sides,
verify that R1 = R2.

12. Therefore verify that R1A = BR1.

13. Execute procedure V:49 on 〈M−1, A〉 and let
〈Q3, R3〉 receive.

14. Verify that M−1 = (λ1m −A)Q3 +R3.

15. Verify that 1m = MM−1 = ((λ1m − B)Q1 +
R1)M−1 = (λ1m − B)Q1M

−1 + R1M
−1 =

(λ1m −B)Q1M
−1 +R1(λI −A)Q3 +R1R3 =

(λ1m−B)Q1M
−1 + (λI −B)R1Q3 +R1R3 =

(λ1m −B)(Q1M
−1 +R1Q3) +R1R3.

16. By equating the powers of λ on both sides,
verify that Q1M

−1 +R1Q3 = 0.

17. By substituting zero for Q1M
−1 +R1Q3, ver-

ify that 1m = (λ1m − B)0m×m + R1R3 =
R1R3.

18. Therefore using procedure V:47, verify
that R3R1 = 1m.

19. Also, verify that B = B1m = BR1R3 =
R1AR3.

20. Yield the pair (R1, R3).

Procedure V:51(4.39)

Objective

Choose a m × n matrix, A. Choose two integers
0 ≤ i, j < m such that i 6= j. The objective of the
following instructions is to negate row i and swap it
with row j using only elementary row operations.

Implementation

1. Let A be our working matrix.

2. Subtract row j from row i.

3. Add row i to row j.

4. Subtract row j from row i.

5. Verify that the ith row has been negated
and swapped with the jth row.

Procedure V:52(4.40)

Objective

Choose a m × n matrix, A. Choose two integers
0 ≤ i, j < n such that i 6= j. The objective of
the following instructions is to negate column i and
swap it with row j using only elementary column
operations.

Implementation

The instructions are analogous to those of procedure
V:51.
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Procedure V:53(4.41)

Objective

Choose an m × n diagonal matrix, A. Choose two
integers 0 ≤ i, j < min(m,n) such that i 6= j. The
objective of the following instructions is to swap Bi,i
and Bj,j using only elementary row and column op-
erations.

Implementation

1. Let A be our working matrix.

2. Use procedure V:52 to negate the ith row and
swap it with the jth row.

3. Use procedure V:52 to negate the ith column
and swap it with the jth column.

4. Therefore, overall verify that Bi,i and
Bj,j have been swapped.

Procedure V:54(4.42)

Objective

Choose an m×n diagonal matrix, A. Choose two in-
tegers 0 ≤ i, j < min(m,n) such that i 6= j. Choose
a rational k 6= 0. The objective of the following
instructions is to multiply Bi,i by k and Bj,j by 1

k
using only elementary row and column operations.

Implementation

1. Let A be our working matrix.

2. Add k times row i to row j.

3. Subtract 1
k times row j from row i.

4. Add k times row i to row j.

5. Verify that the ith row has been scaled by k,
the jth row by − 1

k , and that both these rows
are swapped.

6. Use procedure V:52 to negate the ith row and
swap it with the jth row.

7. Therefore, overall verify that Bi,i has
been multiplied by k, and Bj,j by 1

k .

Procedure V:55(4.43)

Objective

Choose a m ×m rational matrix, A. Execute pro-
cedure V:22 on the polynomial matrix λI − A and

let 〈B〉 be the result. The objective of the follow-
ing instructions is to show that either none of the
diagonal entries of B are equal to zero, or 1 = 0.

Implementation

1. Verify that det(λI −A) is a monic polynomial
of degree m.

2. Therefore using procedure V:39, verify that
det(B) = det(λI −A).

3. Therefore verify that det(B) is a monic poly-
nomial of degree m.

4. If any of the diagonal entries of B equal zero,
then do the following:

(a) Verify that det(B) = B0,0B1,1 · · ·Bm−1,m−1 =
0.

(b) Therefore using (3) and (4a), verify that
1 = 0.

(c) Abort procedure.

5. Otherwise do the following:

(a) Verify that none of the diagonal entries
of B equal zero.

Procedure V:56(4.44)

Objective

Choose a positive integer m and an m×m rational
matrix, A. Execute procedure V:37 on the polyno-
mial matrix λ1m −A and let 〈, B, v, 〉 be the result.
The objective of the following instructions is to ei-
ther show that 0 < 0 or to construct an integer a

such that
∑[a:m]
i deg(Bi,i) = m, deg(Bi,i) > 0 for i

in [a : m], and deg(Bi,i) = 0 for i in [0 : a].

Implementation

1. Execute procedure V:55 on A.

2. If deg(Bi,i) = 0 for i in [0 : m], then do the
following:

(a) Verify that det(λ1m − A) = det(B) =
B0,0B1,1 · · ·Bm−1,m−1.

(b) Therefore verify that 0 <
m = deg(det(λ1m − A)) =
deg(B0,0B1,1 · · ·Bm−1,m−1) = 0 + 0 + · · · +
0 = 0.

(c) Abort procedure.
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3. Otherwise do the following:

(a) Let 0 ≤ a < m be the least integer such that
deg(Ba,a) > 0.

(b) Verify that deg(Bi,i) = 0 for i in [0 : a].

(c) Verify that
∑[a:m]
i deg(Bi,i) =∑[0:m]

i deg(Bi,i) = deg(B0,0B1,1 · · ·Bm−1,m−1) =
deg(det(B)) = deg(λ1m −A) = m.

(d) For i in [a+ 1 : m], do the following:

i. Verify that Bi,i = uiBi−1,i−1.

ii. Verify that Bi,i 6= 0.

iii. Therefore verify that ui 6= 0.

iv. Therefore verify that deg(Bi,i) =
deg(uiBi−1,i−1) ≥ deg(Bi−1,i−1) > 0.

(e) Yield the tuple 〈a〉.

Declaration V:23(4.19)

The notation (ei)k×1 will be used to refer to the k×1
rational matrix such that its ith entry, 1, is the only
non-zero entry.

Declaration V:24(4.22)

The notation matt(p) will be used as a shorthand

for
∑[0:t]
j pjej .

Declaration V:25(4.16)

The notation comp(p), where p 6= 0 is a monic poly-
nomial such that deg(p) > 0, will be used as a short-
hand for the deg(p)× deg(p) rational matrix of the
following constitution:

1. Its first deg(p) − 1 columns equal the last
deg(p)− 1 columns of 1k.

2. Its last column is −matdeg(p)(p).

Procedure V:57(4.45)

Objective

Choose a monic polynomial, p such that deg(p) > 0.
Let k = deg(p). Choose a k×k matrix, D, such that
D = λ1k − comp(p). The objective of the following
instructions is to transform D into diag(1, · · · , 1, p)
by a sequence of elementary operations.

Implementation

1. Let the matrix D be our working matrix.

2. For i in [k : 1], add λ times row i to row i− 1.

3. Verify that D’s first k−1 columns are now the
last k − 1 columns of −1k.

4. Verify that D’s last column is p followed by
some other polynomials.

5. For i in [1 : k], subtract Di,k−1 times column
i− 1 from column k − 1.

6. Verify that D’s last column is now p followed
by zeros.

7. For i in [1 : k], negate row i− 1 and exchange
it with row i using procedure V:52.

8. Therefore verify that D = diag(1, · · · , 1,
p).

Procedure V:58(4.46)

Objective

Choose a positive integer m and an m×m rational
matrix, A. Execute procedure V:15 on the poly-
nomial matrix λ1m − A and let 〈, B, , 〉 receive the
result. Execute procedure V:56 on A and let 〈a〉
receive the result. Let Ei = comp(mon(Ba+i,a+i))
for i in [0 : m − a]. The objective of the following
instructions is to first show that cols(diag(E)) = m,
and second to apply a sequence of elementary oper-
ations on λ1m − diag(E) to obtain the matrix B.

Implementation

1. Verify that the diagonal of B comprises
a rationals followed by Ba,a, Ba+1,a+1, · · · ,
Bm−1,m−1.

2. Using procedure V:57, verify that

cols(diag(E)) =
∑[0:|E|]
i cols(Ei) =∑[0:|E|]

i cols(comp(mon(Ba+i,a+i))) =∑[0:|E|]
i deg(mon(Ba+i,a+i)) =

∑[0:m−a]
i deg(Ba+i,a+i) =∑[a:m]

i deg(Bi,i) = m.

3. Let F = λ1m − diag(E).

4. Now for i in [0 : |E|]:

(a) Let j =
∑[0:i]
r cols(Er).

(b) Let k = j + cols(Ei).
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(c) Apply procedure V:57 on the tuple
〈mon(Ba+i,a+i), F[j:k],[j:k]〉.

5. Now verify that F is an m×m diagonal ratio-
nal matrix.

6. Also verify that the diagonal of F
comprises mon(Ba,a),mon(Ba+1,a+1), · · · ,
mon(Bm−1,m−1) and a 1s.

7. Rearrange the diagonal of F so that mon(Bi,i)
is at the ith position on the diagonal for i in
[a : m] by doing pairwise swaps. In general,
swap the ith and jth diagonal entries using
procedure V:53.

8. For i in [0 : m− 1], do the following:

(a) Let k =
(Bi,i)deg(Bi,i)

(Fi,i)deg(Fi,i)
.

(b) Scale Bi,i by k and Bi+1,i+1 by 1
k using pro-

cedure V:54.

(c) Now verify that Fi,i = Bi,i.

9. Now verify that det(F )m = det(λ1m −
diag(E))m = 1 = det(λ1m −A)m = det(B)m.

10. Therefore verify that (Fm,m)deg(Fm,m)

(a) = det(F )m
(det(F[1:m],[1:m]))m−deg(Fm,m)

(b) = det(B)m
(det(B[1:m],[1:m]))m−deg(Bm,m)

(c) = (Bm,m)deg(Bm,m).

11. Therefore verify that Fm,m = Bm,m.

12. Therefore verify that F = B.

Procedure V:59(4.47)

Objective

Choose a m ×m rational matrix, A. Execute pro-
cedure V:56 on A and let 〈a〉 receive the result. Let
Ei = comp(mon(Ba+i,a+i)) for i in [0 : m− a]. The
objective of the following instructions is to either
show that 0 = 1 or to construct m×m rational ma-
trices R, T such that A = R diag(E)T , RT = 1m,
and TR = 1m.

Implementation

1. Execute procedure V:37 on the polynomial
matrix λ1m − A and let 〈P,B, ,Q〉 be the re-
sult.

2. Verify that P∗(λ1m −A)Q∗ = B.

3. Verify that λ1m −A = P−1
∗BQ

−1
∗.

4. Let Z be a variant of procedure V:37 where
every occurence of procedure V:22 in its in-
structions is replaced with procedure V:58,
and where every mention of v is ignored.

5. Execute procedure Z on the matrix λ1m −
diag(E) and let 〈M, , ,N〉 receive the result.

6. Verify that M∗(λ1m − diag(E))N∗ = B.

7. Verify that λ1m − A = P−1
∗BQ

−1
∗ =

P−1
∗M(λ1m − diag(E))NQ−1

∗.

8. Execute procedure V:50 on the matrices 〈A,
P−1M,diag(E), NQ−1〉. Let the tuple 〈R, T 〉
be the result.

9. Verify that A = R diag(E)T .

10. Verify that RT = 1m.

11. Verify that TR = 1m.

12. Yield the tuple 〈R,E, T 〉.

Procedure V:60(4.86)

Objective

Choose two polynomials a, b and an m ×m matrix
C such that a = b. The objective of the following
instructions is to show that Λ(a,C) = Λ(b, C).

Implementation

Implementation is analogous to that of procedure
II:67.

Procedure V:61(4.87)

Objective

Choose two polynomials a, b and an m × n matrix
C. The objective of the following instructions is to
show that Λ(a+ b, C) = Λ(a,C) + Λ(b, C).

Implementation

Implementation is analogous to that of procedure
II:72.

170



Procedure V:62(4.88)

Objective

Choose a polynomial a and an m×m matrix B. The
objective of the following instructions is to show that
Λ(−a,B) = −Λ(a,B).

Implementation

Implementation is analogous to that of procedure
II:78.

Procedure V:63(4.89)

Objective

Choose two polynomials a, b and an m ×m matrix
C. The objective of the following instructions is to
show that Λ(ab, C) = Λ(a,C)Λ(b, C).

Implementation

Implementation is analogous to that of procedure
II:81.

Procedure V:64(4.48)

Objective

Choose a polynomial, r, and m × m rational ma-
trices, R,A, S such that SR = 1m. The objective
of the following instructions is to show that Λ(r,
RAS) = RΛ(r,A)S.

Implementation

1. Verify that Λ(r,RAS)

(a) =
∑[0:|r|]
j rj(RAS)j

(b) =
∑[0:|r|]
j rjRA

jS

(c) = R(
∑[0:|r|]
j rjA

j)S

(d) = RΛ(r,A)S.

Procedure V:65(4.49)

Objective

Choose a list of m × m rational matrices, A, and
a polynomial, r. The objective of the following in-
structions is to show that Λ(r, diag(A)) = diag(Λ(r,
A)).

Implementation

1. For i = 0 up to i = t, by repeated applica-
tions of procedure V:21, verify that diag(A)i

evaluates to diag(Ai).

2. Therefore verify that Λ(r, diag(A))

(a) =
∑[0:|r|]
j rj diag(A)j

(b) =
∑[0:|r|]
j rj diag(Aj)

(c) =
∑[0:|r|]
j diag(rjA

j)

(d) = diag(
∑[0:|r|]
j rjA

j)

(e) = diag(Λ(r,A)).

Procedure V:66(4.50)

Objective

Choose a m ×m rational matrix, A, and a polyno-
mial, r. Execute procedure V:59 on the matrix A
and let the tuple 〈R1, E,R3〉 receive the result. The
objective of the following instructions is to show that
Λ(r,A) = R1 diag(Λ(r, E))R3.

Implementation

1. Verify that R3R1 = 1m.

2. Using procedure V:64, verify that Λ(r,A) =
Λ(r,R1 diag(E)R3) = R1Λ(r, diag(E))R3.

3. Using procedure V:65, verify that Λ(r,
diag(E)) = diag(Λ(r, E)).

4. Therefore verify that Λ(r,A) =
R1 diag(Λ(r, E))R3.

Procedure V:67(4.51)

Objective

Choose a monic polynomial p 6= 0 such that
deg(p) > 0. The objective of the following instruc-
tions is to show that Λ(p, comp(p)) = 0deg(p)×deg(p).

Implementation

1. Let G = comp(p).

2. For i in [0 : deg(p)], verify that Gie0 =
Gi−1e1 = · · · = G0ei = ei.

3. Therefore, for i ∈ [0 : deg(p)], do the follow-
ing:
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(a) Using (1), verify that Λ(p,G)ei

i. = (
∑[0:|p|]
j pjG

j)ei

ii. = (
∑[0:|p|]
j pjG

j)Gie0

iii. = Gi(GGdeg(p)−1 +
∑[0:deg(p)]
j pjG

j)e0

iv. = Gi(Gedeg(p)−1 +
∑[0:deg(p)]
j pjej)

v. = Gi0deg(p)×1

vi. = 0deg(p)×1.

4. Therefore verify that Λ(p, comp(p)) = Λ(p,
G) = 0deg(p)×deg(p).

Declaration V:26(4.20)

The notation lastA, where A is an m ×m rational
matrix, will be used as a shorthand for the polyno-
mial yielded by executing the following instructions:

1. Execute procedure V:37 on the polynomial
matrix λ1m − A and let the tuple 〈, B, , 〉 re-
ceive the result.

2. Yield 〈Bm−1,m−1〉.

Procedure V:68(4.52)

Objective

Choose a m×m rational matrix, A. The objective
of the following instructions is to show that either
1 = 0 or lastA 6= 0.

Implementation

1. Execute procedure V:55 on A.

2. Therefore verify that lastA 6= 0.

Procedure V:69(4.53)

Objective

Choose a m×m rational matrix, A. The objective
of the following instructions is to either show that
0 < 0 or to show that Λ(lastA, A) = 0m×m.

Implementation

1. Execute procedure V:37 on the matrix A and
let the tuple 〈M,B, v,N〉 receive the result.

2. Execute procedure V:56 on A and let 〈a〉 re-
ceive.

3. Execute procedure V:59 on A and let 〈R,E, T 〉
receive.

4. For j in [0 : |E|]:

(a) Verify that Ej = comp(mon(Ba+j,a+j)).

(b) Verify that lastA = Bm−1,m−1 =

Ba+j,a+j

∏[a+j+1:m]
r vr.

(c) Let k = deg(mon(Ba+j,a+j)).

(d) Therefore using procedure V:67 verify
that Λ(lastA, Ej) = Λ(Bm−1,m−1, Ej) =

Λ(Ba+j,a+j , comp(mon(Ba+j,a+j)))
∏[a+j+1:m]
r Λ(vr,

Ej) = 0k×k
∏[a+j+1:m]
r Λ(vr, Ej) = 0k×k.

5. Therefore using procedure V:66 verify
that Λ(lastA, A) = R diag(Λ(lastA, E))T =
R diag(Λ(Bm−1,m−1, E))T = R0m×mT =
0m×m.

Procedure V:70(4.54)

Objective

Choose a monic polynomial p such that deg(p) > 0.
Choose a polynomial g 6= 0 such that deg(g) <
deg(p). The objective of the following instructions
is to show that Λ(g, comp(p)) 6= 0deg(p)×deg(p).

Implementation

1. Let G = comp(p).

2. Therefore using declaration V:25, verify

that Λ(g,G)e0 = (
∑[0:deg(g)+1]
j gjG

j)e0 =∑[0:deg(g)+1]
j gjej 6= 0deg(p)×1.

3. Therefore verify that Λ(g,G) 6=
0deg(p)×deg(p).

Procedure V:71(4.55)

Objective

Choose a polynomial g and a monic polynomial p
such that deg(p) = deg(g) > 0 and Λ(g, comp(p)) =
0deg(g)×deg(g). The objective of the following in-
structions is to show that g = gdeg(g)p.
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Implementation

1. Let G = comp(p).

2. Using declaration V:25, verify that

0deg(g)×1 = Λ(g,G)e0 = (
∑[0:|g|]
j gjG

j)e0 =

gdeg(g)Gedeg(g)−1 +
∑[0:deg(g)]
j gjej .

3. Therefore for i in [0 : deg(g)], do the following:

(a) Verify that 0 = (gdeg(g)Gedeg(g)−1 +∑[0:deg(g)]
j gjej)i,0.

(b) Therefore using declaration V:25, verify that
−gdeg(g)pi + gi = 0.

(c) Therefore verify that gi = gdeg(g)pi.

4. Therefore verify that g = gdeg(g)p.

Procedure V:72(4.56)

Objective

Choose a m×m rational matrix, A. Choose a poly-
nomial p 6= 0, such that Λ(p,A) = 0m×m. The ob-
jective of the following instructions is to either show
that 0 6= 0 or to construct a polynomial f such that
p = f lastA.

Implementation

1. Let F be the 1× 2 matrix 〈〈p, lastA〉〉.

2. Execute procedure V:37 on F and let 〈M,D, ,
N〉 receive the result.

3. Verify that D0,0 6= 0.

4. Let g = D0,0.

5. Verify that F = M−1
∗DN

−1
∗ = DN−1

∗.

6. Verify that lastA = F0,1 = D0,0N
−1
∗0,1 +

D0,1N
−1
∗1,1 = D0,0N

−1
∗0,1 = gN−1

∗0,1.

7. Therefore verify that N−1
∗0,1 6= 0.

8. Let u = deg(lastA).

9. Now verify that u = deg(lastA) =
deg(D0,0N

−1
∗0,1) ≥ deg(D0,0) = deg(g).

10. Verify that D = M∗FN∗ = FN∗.

11. Therefore verify that g = D0,0 = N∗0,0p +
N∗1,0 lastA.

12. Therefore using procedure V:67, verify that
Λ(g,A) = Λ(N∗0,0, A)Λ(p,A) + Λ(N∗1,0,
A)Λ(lastA, A) = Λ(N∗0,0, A)0m×m + Λ(N∗1,0,
A)0m×m = 0m×m.

13. Execute procedure V:59 on the matrix A and
let the tuple 〈R1, E,R3〉 receive the result.

14. Using procedure V:66, and procedure V:59,
verify that diag(Λ(g,E)) = 1m diag(Λ(g,
E))1m = R3R1 diag(Λ(g,E))R3R1 = R3Λ(g,
A)R1 = R30m×mR1 = 0m×m.

15. Let G = comp(mon(lastA)).

16. Verify that Λ(g,G) = Λ(g,E|E|−1) =
diag(Λ(g,E))[m−u:m],[m−u:m] = 0u×u.

17. If deg(g) < u, then:

(a) Using procedure V:70, verify that Λ(g,G) 6=
0u×u.

(b) Therefore using (16), verify that
0u×u = Λ(g,G) 6= 0u×u.

(c) Abort procedure.

18. Otherwise, do the following:

(a) Verify that deg(g) = u.

(b) Using procedure V:71, verify that g =
gdeg(g) lastA.

(c) Therefore verify that p =
F0,0 = D0,0N

−1
∗0,0 + D0,1N

−1
∗1,0 =

N−1
∗0,0g + N−1

∗1,0 ∗ 0 = N−1
∗0,0g =

N−1
∗0,0gdeg(g) lastA.

(d) Yield the tuple 〈N−1
∗0,0gdeg(g)〉.

Procedure V:73(4.57)

Objective

Choose an m× n rational matrix, A, and an n×m
rational matrix, B, such that AB = 1m. The ob-
jective of the following instructions is to show that
either 0 = 1 or every column of B is non-zero.

Implementation

1. If any column i of B, Bei, is equal to zero,
then:

(a) Verify that 0n×1 = A0n×1 = A(Bei) =
(AB)ei = 1mei = ei.

(b) Therefore verify that 0=1.
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(c) Abort procedure.

Procedure V:74(4.58)

Objective

Choose a m × m rational matrix, A. Choose a
polynomial p such that p 6= 0, Λ(p,A) = 0, and
deg(p) < deg(lastA). The objective of the following
instructions is to show that 0 < 0.

Implementation

1. Execute procedure V:72 on A and p and let f
receive.

2. Now verify that p = f lastA.

3. Now using the precondition and (2), verify
that f 6= 0 and lastA 6= 0.

4. Therefore using the precondition, (2),
and (3), verify that deg(lastA) > deg(p) =
deg(f lastA) ≥ deg(lastA).

5. Abort procedure.

Declaration V:27(4.21)

The notation pows(A), where A is a m×m rational
matrix, will be used as a shorthand for the result
yielded by executing the following instructions:

1. Let t = deg(lastA).

2. Make an m2 × t matrix, B, whose ith column
is the sequential concatenation of the columns
of Ai.

3. Yield 〈B〉.

Procedure V:75(4.59)

Objective

Choose a m×m rational matrix, A. Execute proce-
dure V:37 on pows(A) and let the tuple 〈M,D, ,N〉
receive the result. Let t = cols(pows(A)). The ob-
jective of the following instructions is to show that
either 0 < 0 or to show that Ct(D) = Ct(D)0,0e0 6=
0.

Implementation

1. Execute procedure V:37 on pows(A) and let
the tuple 〈M,D, ,N〉 receive the result.

2. Verify that M∗ pows(A)N∗ = D.

3. Using procedure V:17, verify that
M−1

∗M∗ pows(A)N∗ = 1m2 pows(A)N∗ =
pows(A)N∗ = M−1

∗D.

4. If Ct(D)0,0 = 0, then:

(a) Verify that for some 0 ≤ i < t, Di,i = 0.

(b) Therefore verify that Dei = 0m2×1.

(c) Therefore verify that pows(A)(Nei) =
(pows(A)N)ei = (M−1D)ei = M−1(Dei) =
0m2×1.

(d) Let p = N0,iλ
0 +N1,iλ

1 + · · ·+Nt−1,iλ
t−1.

(e) Therefore verify that Λ(p,A) = 0m×m.

(f) Execute procedure V:73 on N−1
∗ and N∗.

(g) Therefore verify that p 6= 0.

(h) Execute procedure V:74 on A and p.

(i) Abort procedure.

5. Otherwise, do the following:

(a) Execute procedure V:33 on 〈D, 1t, t〉 and let
E receive.

(b) Verify that Ct(D) = Ct(D1t) = ECt(1t) =
E ∗ 1 = E.

(c) Verify that E is a
(
m2

t

)
×
(
t
t

)
diagonal matrix.

(d) Therefore verify that Ct(D) is a
(
m2

t

)
× 1

diagonal matrix.

(e) Therefore verify that Ct(D) =
Ct(D)0,0e0 6= 0.

Procedure V:76(4.60)

Objective

Choose a m × m rational matrix, A. Let t =
cols(pows(A)). The objective of the following in-
structions is to show that either 0 < 0 or to show
that Ct(pows(A)) 6= 0.

Implementation

1. Execute procedure V:37 on pows(A) and let
the tuple 〈M,D, ,N〉 receive the result.

2. Verify that pows(A) = M−1
∗DN

−1
∗.

3. Execute procedure V:73 on Ct(M∗),
Ct(M

−1
∗).
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4. Hence verify that all columns of Ct(M
−1
∗) are

non-zero.

5. Execute procedure V:75 on A.

6. Verify that Ct(D) = Ct(D)0,0e0 6= 0.

7. Therefore verify that Ct(D)0,0 6= 0.

8. Execute procedure V:73 on Ct(N∗), Ct(N
−1
∗).

9. Hence verify that Ct(N
−1) 6= 0.

10. Verify that Ct(pows(A)) = Ct(M
−1
∗DN

−1
∗) =

Ct(M
−1
∗)Ct(D)Ct(N

−1
∗) = Ct(M

−1
∗)Ct(D)0,0e0Ct(N

−1
∗) =

Ct(D)0,0Ct(N
−1
∗)Ct(M

−1
∗)e0 6= 0

(m2

t )×1
.

Declaration V:28(4.26)

The notation tr(A), where A is a square matrix, will
be used as a shorthand for the sum of its diagonal
entries.

Procedure V:77(4.68)

Objective

Choose two m × m matrices A,B. The objec-
tive of the following instructions is to show that
tr(A+B) = tr(A) + tr(B).

Implementation

1. Verify that tr(A+B)

(a) =
∑[0:m]
r (A+B)r,r

(b) =
∑[0:m]
r (Ar +Br)r,r

(c) =
∑[0:m]
r Ar,r +

∑[0:m]
r Br,r

(d) = tr(A) + tr(B).

Procedure V:78(4.69)

Objective

Choose a polynomial b and an m×m matrix A. The
objective of the following instructions is to show that
tr(bA) = b tr(A).

Implementation

1. Verify that tr(bA)

(a) = tr(bm×mA)

(b) =
∑[0:m]
r (bm×mA)r,r

(c) =
∑[0:m]
r

∑[0:m]
t (bm×m)r,tAt,r

(d) =
∑[0:m]
r (bm×m)r,rAr,r

(e) =
∑[0:m]
r bAr,r

(f) = b
∑[0:m]
r Ar,r

(g) = b tr(A).

Procedure V:79(4.70)

Objective

Choose an m × n matrix A and an n × m matrix
B. The objective of the following instructions is to
show that tr(AB) = tr(BA).

Implementation

1. Verify that tr(AB)

(a) =
∑[0:m]
r (AB)r,r

(b) =
∑[0:m]
r

∑[0:n]
t Ar,tBt,r

(c) =
∑[0:n]
t

∑[0:m]
r Bt,rAr,t

(d) =
∑[0:n]
t (BA)t,t

(e) = tr(BA).

Procedure V:80(4.71)

Objective

Choose an m×n matrix A such that A 6= 0. The ob-
jective of the following instructions is to show that
tr(ATA) > 0.

Implementation

1. Verify that tr(ATA)

(a) =
∑[0:n]
r (ATA)r,r

(b) =
∑[0:n]
r

∑[0:m]
t (AT )r,tAt,r

(c) =
∑[0:n]
r

∑[0:m]
t At,rAt,r

(d) =
∑[0:n]
r

∑[0:m]
t (At,r)

2

(e) > 0.

Declaration V:29(4.27)

The phrase ”symmetric matrix” will be used to refer
to matrices A such that ”AT = A”.
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Procedure V:81(4.61)

Objective

Choose a symmetric m×m rational matrix, A. Let
t = deg(lastA). Choose two polynomials u,w such
that deg(u) < t and deg(w) < t. The objective of
the following instructions is to show that tr(Λ(uw,
A)) = mat(u)T pows(A)T pows(A) matt(w).

Implementation

1. Verify that tr(Λ(uw,A))

(a) = tr(Λ(u,A)Λ(w,A))

(b) = tr((
∑[0:t]
p upA

p)(
∑[0:t]
q wqA

q))

(c) = tr(
∑[0:t]
p

∑[0:t]
q upwqA

pAq)

(d) =
∑[0:t]
p

∑[0:t]
q upwq tr(ApAq)

(e) =
∑[0:t]
p

∑[0:t]
q upwq

∑[0:m]
e

∑[0:m]
f Ape,f ·

Aqf,e

(f) =
∑[0:t]
p

∑[0:t]
q upwq

∑[0:m]
e

∑[0:m]
f Apf,e ·

Aqf,e

(g) =
∑[0:t]
p

∑[0:t]
q upwq

∑[0:m2]
g pows(A)g,ppows(A)g,q

(h) =
∑[0:t]
p

∑[0:t]
q upwq(pows(A)T pows(A))p,q

(i) =
∑[0:t]
p up(pows(A)T pows(A) matt(w))p

(j) = matt(u)T pows(A)T pows(A) matt(w)

Declaration V:30(4.25)

The notation selA, where A is an m × m rational
matrix, will be used as a shorthand for the result
yielded by executing the following instructions:

1. Using procedure V:42, procedure
V:76, and procedure V:80, ver-
ify that Ct(pows(A)T pows(A)) =

Ct(pows(A)T )Ct(pows(A)) = Ct(pows(A))
T
Ct(pows(A)) =

tr(Ct(pows(A))
T
Ct(pows(A))) > 0.

2. Let t = deg(lastA).

3. Let H = (pows(A)T pows(A))\et−1.

4. Yield 〈
∑[0:t]

j Hj,0λ
j

(lastA)t
〉.

Procedure V:82(4.62)

Objective

Choose a symmetric m×m rational matrix, A. Let
t = deg(lastA). Choose a polynomial u such that
deg(u) < t. The objective of the following instruc-
tions is to show that tr(Λ(u selA, A)) = ut−1

(lastA)t
.

Implementation

1. Using procedure V:81, verify that tr(Λ(u selA,
A))

(a) = mat(u)T pows(A)T pows(A) matt(selA)

(b) = mat(u)T pows(A)T pows(A)((pows(A)T pows(A))\et−1)
(lastA)t

(c) = mat(u)T et−1

(lastA)t

(d) =
mat(u)t−1,0

(lastA)t

(e) = ut−1

(lastA)t
.

Procedure V:83(4.63)

Objective

Choose a symmetric m×m rational matrix, A. The
objective of the following instructions is to either
show that 0 6= 0 or construct polynomials u, v such
that u lastA +v selA = 1.

Implementation

1. Let t = deg(lastA).

2. Let G be the 1× 2 matrix 〈〈lastA, selA〉〉.

3. Execute procedure V:37 on G and let the tuple
〈M,D, ,N〉 receive.

4. Verify that G = M−1
∗DN

−1
∗.

5. Verify that lastA 6= 0.

6. Therefore verify that D0,0 6= 0.

7. If deg(D0,0) > 0, then do the following:

(a) Let b = N−1
∗0,0.

(b) Verify that lastA = bD0,0.

(c) Therefore verify that b 6= 0.

(d) Let z = deg(b).

(e) Verify that t = deg(lastA) = deg(bD0,0) =
deg(b) + deg(D0,0) > deg(b) = z.
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(f) Let c = N−1
∗0,1.

(g) Verify that selA = cD0,0.

(h) Let u = λt−z−1b.

(i) Execute procedure V:82 on A and u.

(j) Hence verify that (lastA)t tr(Λ(u selA, A)) =
ut−1 = bz 6= 0.

(k) Also verify that tr(Λ(u selA, A))

i. = tr(Λ(λt−z−1bcD0,0, A))

ii. = tr(Λ(λt−z−1c lastA, A))

iii. = tr(Λ(λt−z−1c, A)Λ(lastA, A))

iv. = tr(Λ(λt−z−1c, A)0m×m)

v. = tr(0m×m)

vi. = 0.

(l) Therefore verify that 0 6= 0.

(m) Abort procedure.

8. Otherwise, do the following:

(a) Verify that deg(D0,0) = 0.

(b) Let u =
N0,0

D0,0
.

(c) Let v =
N1,0

D0,0
.

(d) Verify that u lastA +v selA = 1.

(e) Yield the tuple 〈u, v〉.

Procedure V:84(4.64)

Objective

Choose a symmetric m×m rational matrix A, where
m > 0. Let t = deg(lastA). The objective of the fol-
lowing instructions is to either show that 0 6= 0 or
to construct lists of polynomials s, q such that

1. For i = 0 to i = t, deg(si) = i.

2. For i = 0 to i = t, sgn((si)i) = sgn((st)t).

3. For i = 1 to i = t− 1, si−1 + si+1 = qisi.

4. st = lastA.

Implementation

1. Let st = lastA.

2. Execute procedure V:83 on A and let 〈u, st+1〉
receive the result.

3. Hence verify that ust + st+1 selA = 1.

4. Let qt = st+1 div st.

5. Let st−1 = st+1 mod st.

6. Verify that st+1 = qtst + st−1, where
deg(st−1) < deg(st) = t.

7. Therefore verify that ust+(qtst+st−1) selA =
1.

8. Therefore verify that Λ(st−1 selA, A) =
Λ(ust + (qtst + st−1) selA, A) = Λ(1, A) = 1m.

9. Therefore using procedure V:82, verify that
(st−1)t−1

(st)t
= tr(Λ(st−1 selA, A) = tr(1m) =

m > 0.

10. For i ∈ [t : 1], do the following:

(a) Let qi = (−si+1) div(−si).

(b) Let si−1 = (−si+1) mod (−si).

(c) Verify that deg(qi) = 1.

(d) Verify that (qi)1 = (si+1)i+1

(si)i
.

(e) Also verify that −si+1 = −qisi + si−1.

(f) Therefore verify that qisi = si+1 + si−1.

(g) Therefore verify that qisi − si+1 = si−1.

(h) Execute procedure II:125 on the tuple 〈s, q,
i− 1〉 and let 〈p, j〉 receive.

(i) Verify that si−1 = pst−1 + jst.

(j) Verify that deg(p) = t− 1− (i− 1) = t− i.

(k) Verify that deg(j) = t−2−(i−1) = t−1− i

(l) Therefore verify that Λ(si−1, A) =
Λ(pst−1 + jst, A) = Λ(pst−1, A) + Λ(j,
A)Λ(st, A) = Λ(pst−1, A) + Λ(j, A)0m×m =
Λ(pst−1, A).

(m) If Λ(p,A) = 0, then do the following:

i. Execute procedure V:74 on A and p.

ii. Abort procedure.

(n) Otherwise, if Λ(si−1, A) = 0m×m, then do
the following:

i. Verify that Λ(pst−1 selA, A) = Λ(pst−1,
A)Λ(selA, A) = Λ(si−1, A)Λ(selA, A) =
0m×mΛ(selA, A) = 0m×m.
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ii. Verify that Λ(pst−1 selA, A) = Λ(p,
A)Λ(st−1 selA, A) = Λ(p,A)1m = Λ(p,
A) 6= 0m×m.

iii. Therefore verify that 0 6= 0.

iv. Abort procedure.

(o) Otherwise if Λ(si−1 selA, A) = 0m×m, then
do the following:

i. Verify that Λ(si−1 selA st−1, A) =
Λ(si−1 selA, A)Λ(st−1, A) = 0m×mΛ(st−1,
A) = 0m×m.

ii. Verify that Λ(si−1 selA st−1, A) = Λ(si−1,
A)Λ(selA st−1, A) = Λ(si−1, A)1m =
Λ(si−1, A) 6= 0m×m.

iii. Therefore verify that 0m×m 6= 0m×m.

iv. Abort procedure.

(p) Otherwise, do the following:

i. Verify that deg(si−1) < i.

ii. Verify that Λ(si−1 selA, A) 6= 0m×m.

iii. Execute the subprocedure V:85:0 on the
tuple (i− 1, si−1).

iv. Hence using procedure V:80, verify

that (si−1)i−1

(si)i
= tr(Λ(si−1

2selA
2, A)) =

tr((Λ(si−1 selA, A))2) = tr((Λ(si−1 selA,
A))T (Λ(si−1 selA, A))) > 0.

v. Therefore verify that sgn((si−1)i−1) =
sgn((si)i).

11. Yield the tuple 〈s[0:t+1], q[0:t]〉.

Subprocedure V:85:0

Objective Choose an integer 0 ≤ k ≤ t such
that polynomial sk is defined. Choose a polyno-
mial g such that deg(g) ≤ min(k, t − 1). The ob-
jective of the following instructions is to show that
tr(Λ(gskselA

2, A)) = gk
(sk+1)k+1

.

Implementation

1. If k = t, then verify that tr(Λ(gskselA
2, A))

(a) = tr(Λ(gstselA
2, A))

(b) = tr(Λ(gselA
2, A)Λ(st, A))

(c) = tr(Λ(gselA
2, A)0m×m)

(d) = 0

(e) = gk
(sk+1)k+1

.

2. Otherwise if k = t − 1, then verify that
tr(Λ(gskselA

2, A))

(a) = tr(Λ(gst−1selA
2, A))

(b) = tr(Λ(gselA, A)Λ(st−1selA, A))

(c) = tr(Λ(g selA, A)1m)

(d) = tr(Λ(g selA, A))

(e) = gk
(sk+1)k+1

.

3. Otherwise if k < t− 1, then do the following:

(a) Verify that deg(gqk+1) = k + 1 ≤ t− 1.

(b) Execute the subprocedure V:85:0 on the tu-
ple 〈k + 1, gqk+1〉.

(c) Now verify that tr(Λ((gqk+1)sk+1selA
2,

A)) =

(sk+2)k+2
(sk+1)k+1

gk

(sk+2)k+2
= gk

(sk+1)k+1
.

(d) Verify that deg(g) ≤ k ≤ t− 2.

(e) Execute the subprocedure V:85:0 on the tu-
ple 〈k + 2, g〉.

(f) Now verify that tr(Λ(gsk+2selA
2, A)) =

gk+2

(sk+3)k+3
= 0

(sk+3)k+3
= 0.

(g) Therefore verify that tr(Λ(gskselA
2, A))

i. = tr(Λ(g(qk+1sk+1 + sk+2)selA
2, A))

ii. = tr(Λ(gqk+1sk+1selA
2 + gsk+2selA

2, A))

iii. = tr(Λ(gqk+1sk+1selA
2, A)+Λ(gsk+2selA

2,
A))

iv. = tr(Λ(gqk+1sk+1selA
2, A))+tr(Λ(gsk+2selA

2,
A))

v. = gk
(sk+1)k+1

+ 0

vi. = gk
(sk+1)k+1

.

Procedure V:85(4.65)

Objective

Choose a symmetric m×m rational matrix, A. Let
t = deg(lastA). The objective of the following in-
structions is to either show that 0 < 0 or to con-
struct two lists of rational numbers c, d such that
c0 < d0 ≤ c1 < d1 ≤ · · · ≤ ct−1 < dt−1 and
0 6= sgn(Λ(lastA, ci)) = − sgn(Λ(lastA, di)) for i in
[0 : t].
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Implementation

1. Execute procedure V:84 on the matrix A and
let the tuple 〈s, q〉 receive the result.

2. Execute procedure II:124 supplying the tuple
〈s, q〉. Let the tuple 〈c, d〉 receive the result.

3. Verify that c0 < d0 ≤ c1 < d1 ≤ · · · ≤
ct−1 < dt−1.

4. Verify that sgn(Λ(lastA, ci)) =
− sgn(Λ(lastA, di)) for i in [0 : t].

5. Yield 〈c, d〉.

Procedure V:86(4.66)

Objective

Choose a symmetric m×m rational matrix, A. Let
t = deg(lastA). Execute procedure V:85 on A and
let the tuple 〈c, d〉 receive the result. Execute proce-
dure V:37 on A and let the tuple 〈, , u, 〉 receive the
result. The objective of the following instructions
is to either show that 1 = −1 or to construct a list
of non-negative integers k such that 0 6= sgn(Λ(uki ,
ci)) = − sgn(Λ(uki , di)) for i in [0 : t].

Implementation

1. Verify that lastA = u0u1 · · ·um−1.

2. For i in [0 : t], do the following:

(a) Using the precondition, verify that 0 6=
sgn(Λ(lastA, ci)) = − sgn(Λ(lastA, di)).

(b) If 0 ∈ sgn(Λ(u, ci)), then do the following:

i. Verify that 0

A. = sgn(Λ(u0, ci)) sgn(Λ(u1, ci)) · · · sgn(Λ(um−1,
ci))

B. = sgn(Λ(u0, ci)Λ(u1, ci) · · ·Λ(um−1, ci))

C. = sgn(Λ(u0u1 · · ·um−1, ci))

D. = sgn(Λ(lastA, ci))

E. 6= 0.

(c) If 0 ∈ sgn(Λ(u, di)), then do the following:

i. Verify that 0

A. = sgn(Λ(u0, di)) sgn(Λ(u1, di)) · · · sgn(Λ(um−1,
di))

B. = sgn(Λ(u0, di)Λ(u1, di) · · ·Λ(um−1,
di))

C. = sgn(Λ(u0u1 · · ·um−1, di))

D. = sgn(Λ(lastA, di))

E. 6= 0.

(d) If sgn(Λ(uj , ci)) = sgn(Λ(uj , di)) for j ∈ [0 :
m], then do the following:

i. Verify that sgn(Λ(lastA, ci))

A. = sgn(Λ(u0u1 · · ·um−1, ci))

B. = sgn(Λ(u0, ci)) sgn(Λ(u1, ci)) · · · sgn(Λ(um−1,
ci))

C. = sgn(Λ(u0, di)) sgn(Λ(u1, di)) · · · sgn(Λ(um−1,
di))

D. = sgn(Λ(u0u1 · · ·um−1, di))

E. = sgn(Λ(lastA, di)).

ii. Therefore verify that 1 = −1.

iii. Abort procedure.

(e) Otherwise do the following:

i. Let ki be the least integer such that
0 6= sgn(Λ(uki , ci)) = − sgn(Λ(uki , di)).

3. Yield 〈k〉.

Procedure V:87(4.67)

Objective

Choose a symmetric m×m rational matrix, A. Ex-
ecute procedure V:37 on A and let the tuple 〈, ,
u, 〉 receive the result. Execute procedure II:112
on A and let k receive. Let t = deg(lastA). Let

nj =
∑[0:t]
i [ki = j] for j in [0 : m]. The objective

of the following instructions is to either show that
0 < 0, or to show that ni = deg(ui) for i in [0 : m].

Implementation

1. Verify that
∑[0:m]
j nj =

∑[0:m]
j

∑[0:t]
i [ki =

j] =
∑[0:t]
i

∑[0:m]
j [ki = j] =

∑[0:t]
i 1 = t.

2. If for any i in [0 : m], ni > deg(ui), then do
the following:

(a) Execute procedure II:112 on the polynomial
ui along with deg(ui)+1 of the distinct pairs
〈cl, dl〉 such that kl = i.
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(b) Abort procedure.

3. Otherwise if for any i in [0 : m], ni < deg(ui),
then do the following:

(a) Verify that
∑[0:m]
i nj <

∑[0:m]
i deg(uj) = t.

(b) Therefore using (1) and (a), verify that∑[0:m]
i nj <

∑[0:m]
i nj .

(c) Abort procedure.

4. Otherwise, do the following:

(a) For all i in [0 : m], verify that ni =
deg(ui).

Procedure V:88(4.72)

Objective

Choose a symmetric m×m rational matrix, A. Let
t = deg(lastA). Execute procedure V:86 on the ma-
trix A and let the tuple 〈k〉 receive the result. The
objective of the following instructions is to either

show that 0 < 0 or to show that
∑[0:t]
i (m−ki) = m.

Implementation

1. Execute procedure V:37 on the matrix A and
let the tuple 〈, D, u, 〉.

2. Using procedure V:87, verify that
∑[0:t]
i (m −

ki)

(a) =
∑[0:t]
i

∑[0:m]
j [ki ≤ j]

(b) =
∑[0:m]
j

∑[0:t]
i [ki ≤ j]

(c) =
∑[0:m]
j

∑[0:t]
i [ki ≤ j]

∑[0:m]
l [ki = l]

(d) =
∑[0:m]
j

∑[0:m]
l

∑[0:t]
i [ki ≤ j][ki = l]

(e) =
∑[0:m]
j

∑[0:m]
l

∑[0:t]
i [l ≤ j][ki = l]

(f) =
∑[0:m]
j

∑[0:m]
l [l ≤ j]

∑[0:t]
i [ki = l]

(g) =
∑[0:m]
j

∑[0:m]
l [l ≤ j] deg ul

(h) =
∑[0:m]
j

∑[0:j+1]
l deg ul

(i) =
∑[0:m]
j degDj,j

(j) = m
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